The organization of the Cebus monkey regina was analysed after the intraocular injection of 5,6-dihydroxytryptamine. This amine was taken up not only by the previously known dopaminergic neurons, but also by a set of indoleamine-accumulating neurons, whose processes are confined to the inner plexiform layer. The synaptic contacts of the dopaminergic neurons were analysed in the electron microscope after the processes of the indoleamine-accumulating neurons were destroyed by the intravitreal injection of the neurotoxic indoleamine, 5,7-dihydroxytryptamine. The subsequent injection of 5,6-dihydroxytryptamine induces certain changes in the dopaminergic neurons which accumulate the substance: electron-dense cores appear in the synaptic vesicles, and increased electron-density of mitochodrial and cellular membranes is often observed. The dopaminergic neurons were found to be presynaptic to amacrine cell perikarya and processes in the inner plexiform layer. In the outer plexiform layer they were presynaptic to both bipolar and horizontal cells, but they did not contact photoreceptors. The dopaminergic neurons received synapses only in the inner plexiform layer, from amacrine cell processes. It is inferred that in Cebus most dopaminergic neurons belong to a special class of retinal neuron, the interplexiform cells, which appear to transmit information centrifugally within the retina, from the inner to the outer plexiform layers. There are considerable similarities between the synaptology of the dopaminergic interplexiform neurons in the Cebus monkey and the goldfish retina, and the function of interplexiform neurons may therefore be similar in these two species.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.901920404DOI Listing

Publication Analysis

Top Keywords

dopaminergic neurons
24
plexiform layer
16
cebus monkey
12
inner plexiform
12
neurons
11
neurons cebus
8
injection 56-dihydroxytryptamine
8
indoleamine-accumulating neurons
8
amacrine cell
8
outer plexiform
8

Similar Publications

Parkinson's disease (PD) is characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta, which leads to a reduction in the production of dopamine. Medication with levodopa becomes less effective as the disease progresses. Despite the excellent results observed in clinical practice with the medicinal use of Cannabis in the treatment of PD, the level of scientific evidence is still limited due to the small number of studies published in this field.

View Article and Find Full Text PDF

Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic neurons directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R).

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss, Lewy body build-up, and motor dysfunction. One of the primary pathogenic mechanisms of PD development is autophagy dysfunction and nitric oxide-mediated neurotoxicity.

Purpose: The current study focuses on autophagy and nitric oxide (NO) signaling roles in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated PD mice and their protection by their modulators.

View Article and Find Full Text PDF

Dopaminergic neurodegeneration in cultivated with .

MicroPubl Biol

January 2025

Natural Sciences, Converse University, Spartanburg, South Carolina, United States.

Disruption of the human microbiome has emerged as a major contributing factor in the etiology of neurodegenerative disease. Previous work suggests a positive correlation between periodontal inflammation and Parkinson's disease. Here, we show that feeding animals causes neurodegeneration that is not additive with neurodegeneration induced by the Parkinson's-associated protein, α-synuclein.

View Article and Find Full Text PDF

Chronic exposure to manganese (Mn) induces manganism and has been widely implicated as a contributing environmental factor to Parkinson's disease (PD), featuring notable overlaps between the two in motor symptoms and clinical hallmarks. Here, we developed an adult model of Mn toxicity that recapitulated key parkinsonian features, spanning behavioral deficits, neuronal loss, and dysfunctions in lysosomes and mitochondria. Metabolomics analysis of the brain and body tissues of these flies at an early stage of toxicity identified systemic changes in the metabolism of biotin (also known as vitamin B) in Mn-treated groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!