It has been shown that during fast (< 1 ms) photosensitized by anthraquinone or benzophenone reduction of cytochrome c in 0.15 N NaOH water-glycerol solutions ferrocytochrome c in a nonequilibrium state with increased reactivity was formed. The rate constants for reactions of CO binding to nonequilibrium and equilibrium ferrocytochrome c are 2.10(4) M-1S-1 and 70 M-1S-1 correspondingly. Nonequilibrium cytochrome c is relaxed to corresponding equilibrium state with lambda = 4 S-1.

Download full-text PDF

Source

Publication Analysis

Top Keywords

[reaction capacity
4
nonequilibrium
4
capacity nonequilibrium
4
nonequilibrium form
4
form cytochrome
4
cytochrome formed
4
formed reduction
4
reduction protein
4
protein radicals]
4
radicals] fast
4

Similar Publications

A Multifunctional MIL-101-NH(Fe) Nanoplatform for Synergistic Melanoma Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.

Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.

Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).

View Article and Find Full Text PDF

The development of a sensitive and selective silver nanoparticle assay for the quantitation of vitamin C (SNaP-C), as ascorbic acid (AA) and total ascorbic acid (TAA = AA + dehydroascorbic acid, DHAA), is described. Three assay parameters were investigated and optimized: (1) synthesis of silver nanoparticles (AgNPs) to produce a reliable enhanced localized surface plasmon resonance (LSPR) in the presence of specific added antioxidants; (2) ensuring long-term stability of AA and DHAA in aqueous solutions; and (3) SNaP-C assay conditions to allow for rapid analysis of samples (beverages) by monitoring the enhanced LSPR. The synthesis of AgNPs using soluble starch as a capping agent and d-arabinose as a reducing agent was optimized in a CEM Discover SP laboratory microwave.

View Article and Find Full Text PDF

Background: The SARS-CoV-2 pandemic caused millions of infections worldwide. Among the strategies for effective containment, frequent and massive testing was fundamental. Although sample pooling allows multiplying the installed analysis capacity, the definition of the number of samples to include in a pool is commonly guided more by economic parameters than analytical quality.

View Article and Find Full Text PDF

Age-related cataracts (ARCs) are associated with increased oxidative stress and cellular senescence. Our objective is to investigate the function of Sirtuin 1 (SIRT1) within ARCs. In ARCs tissues and HO-treated lens epithelial cells (LECs), the expression levels of SIRT1 were examined.

View Article and Find Full Text PDF

Minimizing Zn Loss Through Dual Regulation for Reversible Zinc Anode Beyond 90% Utilization Ratio.

Small

January 2025

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Center of Energy Storage Materials and Technology, Nanjing University, Nanjing, 210093, China.

Large-scale energy storage devices experience explosive development in response to the increasing energy crisis. Zinc ion batteries featuring low cost, high safe, and environment friendly are considered promising candidates for next-generation energy storage devices. However, their practical application suffers from the limited anode lifespan under a high zinc utilization ratio, which can be attributed to aggravated Zn loss caused by zinc conversion reactions and "dead" Zn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!