A small plasmid DNA was assembled into chromatin in vitro by incubation in an extract prepared frog eggs of Xenopus laevis. The plasmid DNA contrained the regulatory region of the Escherichia coli lac operon, the transcription of which is under positive regulation by catabolite activator protein (CAP) and negative regulation by lac repressor. After incubation in the egg extract the plasmid DNA acquired approximately 60% of the predicted maximum number of nucleosomes. Chromatin was treated with protein and DNA cross-linking agents prior to transcriptin in order to demonstrate that regions of the DNA organized into nucleosomes served as templates for transcription. Cross-linking abolished transcription of chromatin but had no effect on transcription of the DNA, suggesting that transcription of untreated chromatin was not solely attributable to nucleosome-free regions. In support of this conclusion, the average size of the RNA transcribed from chromatin was approximately 1000 bases, which was approximately 5 times longer than the average distance between nucleosomes. Transcription of in vitro assembled plasmid chromatin by E. coli RNA polymerase was stimulated by catabolite activator protein. The CAP-mediated stimulation of transcription was detectable as an increase in total transcription that was specific to chromatin made from a plasmid containing the lac regulatory DNA sequences. The specific increase in the amount of RNA whose synthesis was initiated within the lac region was demonstrated by hybridization of transcription products to complementary DNA fragments bound to nitrocellulose filters. Preliminary investigation of the action of lac repressor suggested that it also modulated transcription from the chromatin template.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00554a023 | DOI Listing |
Annu Rev Biophys
January 2025
1CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA; email:
Like their prokaryotic counterparts, eukaryotic transcription factors must recognize specific DNA sites, search for them efficiently, and bind to them to help recruit or block the transcription machinery. For eukaryotic factors, however, the genetic signals are extremely complex and scattered over vast, multichromosome genomes, while the DNA interplay occurs in a varying landscape defined by chromatin remodeling events and epigenetic modifications. Eukaryotic factors are rich in intrinsically disordered regions and are also distinct in their recognition of short DNA motifs and utilization of open DNA interaction interfaces as ways to gain access to DNA on nucleosomes.
View Article and Find Full Text PDFDis Model Mech
January 2025
Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands.
Hepatic organoid cultures are a powerful model to study liver development and diseases in vitro. However, hepatocyte-like cells differentiated from these organoids remain immature compared to primary human hepatocytes (PHHs), which are the benchmark in the field. Here, we applied integrative single-cell transcriptome and chromatin accessibility analysis to reveal gene regulatory mechanisms underlying these differences.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden.
Single-cell RNA-seq methods can be used to delineate cell types and states at unprecedented resolution but do little to explain why certain genes are expressed. Single-cell ATAC-seq and multiome (ATAC + RNA) have emerged to give a complementary view of the cell state. It is however unclear what additional information can be extracted from ATAC-seq data besides transcription factor binding sites.
View Article and Find Full Text PDFBurns Trauma
January 2025
Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.
Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China.
Cell fate determination at the chromatin level is not fully comprehended. Here, we report that c-JUN acts on chromatin loci to limit mesoderm cell fate specification as cells exit pluripotency. Although c-JUN is widely expressed across various cell types in early embryogenesis, it is not essential for maintaining pluripotency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!