The tRNAs that are bound to the genomic RNAs of several murine, feline, and primate retroviruses have been identified. Transfer RNAs were divided into those loosely bound and those tightly bound by stepwise thermal dissociation of the 70 S RNA. They were then identified and semiquantitated by aminoacylation. Proline tRNA is the most tenaciously bound tRNA in several strains of murine leukemia virus, two strains of feline leukemia virus, and the primate viruses simian sarcoma, baboon endogenous, and gibbon ape lymphoma. In the feline xenotropic virus, RD-114, tRNAGly is enriched in the most tightly bound fraction. In Mason-Pfizer monkey virus, as in the murine mammary tumor virus, tRNALys is the tRNA most tenaciously bound to its genomic RNA. Besides the most tightly associated tRNA, one or more different tRNAs are found in relatively large amounts in association with the 70 S RNA. (For convenience, we refer to the largest RNA ccomplex (50-70 S) isolated from any of the retroviruses studies as '70 S' RNA.) These tRNAs can be distinguished from the most tightly bound tRNA by the fact that they can be dissociated at lower temperatures. However, they occur in the same relative abundance as the tightly bound tRNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2787(80)90139-2 | DOI Listing |
J Biomol NMR
January 2025
Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the N spectral frequency dimension.
View Article and Find Full Text PDFBioresour Technol
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China.
Extracellular polymeric substances (EPS) are well-acknowledged to accelerate microalgal biofilm formation, yet specific role of stratified EPS is unknown. Bacterial biofilm stratified EPS could enrich phosphorus, whether microalgal biofilm stratified EPS could also realize phosphorus or nitrogen enrichment remains unclarified. This study investigated microalgae dominant biofilm growth characteristics and nutrients removal via inoculating microalgae and stratified bacterial EPS at various microalgae:bacteria ratios.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:
Controlling the spread of antibiotic-resistance genes (ARGs) under antibiotic stress has become an increasingly urgent issue. Microalgae possess the capability to remove antibiotics while concurrently inhibiting ARGs. Microalgae-bacteria systems can produce significant quantities of extracellular polymeric substances (EPS).
View Article and Find Full Text PDFJ Pestic Sci
November 2024
Bacillus Tech LLC.
The Cry1Fa insecticidal protein from (Bt) was expressed on the surface of (Bs) spores to create transgenic Bs spores referred to as Spore-Cry1Fa. Cry1Fa, along with its leader sequence, was connected to the carboxyl end of a Bs spore outercoat protein, CotC, through a flexible linker. The Arg-27 residue of the Cry1Fa protein was mutated to Leu to prevent detachment from the spores due to protease digestion.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China. Electronic address:
Copper (Cu)-containing wastewater has proven difficult to effectively treat using the anammox process. In this study, the nitrogen removal efficiency (NRE), sludge characteristics, microbial community and recovery mechanisms of biochar-mediated anammox under Cu stress were elucidated. At a Custress of 5 mg/L, a 73.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!