1. Phosphatidylcholine synthesis in the foetal, newborn and adult small intestine of rats was studied by determination of cytidine diphosphocholine-1,2-diacylglycerocholine phosphotransferase (cholinephosphotransferase) and acyl-CoA-1-acyl-sn-glycerol-3-phosphocholine acyltransferase (lysophosphatidylcholine acyltransferase) activities and the incorporation of [1-14C]oleic acid into phosphatidylcholine. 2. Cholinephosphotransferase activity was low in foetal jejunum and ileum, increased 3-4 fold in the ileum by 6 days of age and by 12 days in the jejunum. Jejunal activity remained constant throughout weaning; ileal activity gradually decreased to values 25% of that of the jejunum. 3. Lysophosphatidylcholine acyltransferase activity was high in foetal jejunum and ileum, decreased 70% immediately after birth in the jejunum and increased to adult values by 12 days of age. Ileal activity decreased by 20% after birth, but decreased more rapidly at weaning to 30% of the activity in jejunum. 4. Initial rates and steady-state incorporation of [1-14C]oleic acid into phosphatidylcholine by jejunal rings of 10 day-old rats exceeded that observed in jejunal rings from adult rats by 2-4-fold. 5. In the postnatal jejunum, neither cholinephosphotransferase and lysophosphatidylcholine acyltransferase activities nor oleic acid incorporation were stimulated by cortisone administration in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1161589 | PMC |
http://dx.doi.org/10.1042/bj1860399 | DOI Listing |
Commun Biol
January 2025
Department of Cellular Architecture Studies, Division of Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
The rapid intraerythrocytic replication of Plasmodium falciparum, a deadly species of malaria parasite, requires a quick but constant supply of phospholipids to support marked cell membrane expansion. In the malarial parasite, many enzymes functioning in phospholipid synthesis pathway have not been identified or characterized. Here, we identify P.
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of Education, Naval Medical University, Shanghai, China.
Myelin is the key structure for high-speed information transmission and is formed by oligodendrocytes (OLs) which are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system. Lipid is the main component of myelin and the role of lipid metabolism-related molecules in myelination attach increasing attention. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) mediates the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), and its role in myelination draws our interest as LPC is a classical demyelination inducer and PC is a major component of myelin.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Facial Features, 970 Hospital, Joint Service Support Force of the Chinese People's Liberation Army, Yantai, Shandong, China. Electronic address:
Allergic rhinitis (AR), common in children and adolescents, involves Lysophosphatidylcholine acyltransferase 1 (LPCAT1) catalyzing surfactant lipid biosynthesis and suppressing endoplasmic reticulum expression. However, the precise mechanism underlying the impact of LPCAT1 on epithelial cell damage in AR remains elusive. Hence, the present investigation elucidated the potential effect of LPCAT1 on epithelial cell damage in AR by inhibiting endoplasmic reticulum stress.
View Article and Find Full Text PDFMol Genet Genomics
January 2025
Department of Emergency, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
Acute kidney injury (AKI) is one of the most serious and common complications in the course of sepsis, known for its poor prognosis and high mortality rate. Recently, ferroptosis, as a newly discovered regulatory cell death, might be closely associated with the progression of AKI. METTL14 is a writer of RNA m6A, an abundant epigenetic modification in transcriptome with broad function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!