Bloodstream forms of Trypanosoma brucei have been screened for the presence of enzymes that could serve as markers for the plasma membrane, flagellar pocket, lysosomes, endoplasmic reticulum and Golgi apparatus in order to study the subcellular organization of the digestive system of the parasite. Acetylesterase, acid DNase, acid phosphatase, acid phosphodiesterase, acid proteinase, acid RNase, alanine aminotransferase, galactosyl transferase, alpha-glucosidase, inosine diphosphatase and alpha-mannosidase were partially characterized and their assays optimized for pH-dependent activity, linearity of reaction with respect to incubation time and enzyme concentration, and the effect of inhibitors and activators. The association of these enzymes with particulate material and the presence of structural latency were investigated. Acid proteinase and alpha-mannosidase are particle-bound and latent in cytoplasmic extracts; they can be activated and solubilized in part by Triton X-100. Similar results were obtained for acid phosphatase, acid phosphodiesterase and inosine diphosphatase. Neutral alpha-glucosidase, though partly sedimentable, does not show latency and is readily solubilized by the detergent. Galactosyl transferase is firmly membrane-bound even in the presence of 0.1% Triton X-100. Cell fractionation by differential centrifugation and density equilibration on sucrose gradients revealed that both alpha-mannosidase and acid proteinase are associated with organelles that band at a density of about 1.20 g/cm3. Inosine diphosphatase, galactosyl transferase, acid phosphatase and acid phosphodiesterase sediment predominantly as microsomal constituents equilibrating at densities between 1.13 and 1.15 g/cm3. In addition, inosine diphosphatase and galactosyl transferase exhibit considerable activity at higher densities (1.18-1.25 g/cm3). Neutral alpha-glucosidase is mainly recovered in the nuclear and microsomal fraction; its particulate part equilibrates as a single band at rho = 1.22 g/cm3. Acetylesterase and acid DNase are largely soluble, whereas acid RNase does not produce distinct sedimentation and banding profiles. In intact cells, neutral alpha-glucosidase and acid phosphatase appear to be highly accessible to their substrates. It is tentatively concluded that (a) acid proteinase and alpha-mannosidase are lysosomal enzymes, (b) acid phosphatase and acid phosphodiesterase are associated with the flagellar pocket and part of the former enzyme probably with the endoplasmic reticulum, (c) galactosyl transferase is a constituent of the Golgi apparatus, and (d) alpha-glucosidase may serve as a marker for the plasma membrane. Inosine diphosphatase may also be derived from the latter structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1980.tb04486.x | DOI Listing |
SLAS Discov
January 2025
The Hormel Institute, University of Minnesota, Austin, MN 55912. Electronic address:
Metabolic reprogramming of purine biosynthesis is a hallmark of cancer metabolism and represents a critical vulnerability. The enzyme phosphoribosylformylglycinamidine synthase (PFAS) catalyzes the fourth step in de novo purine biosynthesis and has been demonstrated to be prognostic for survival of liver cancer. Despite the importance of this protein as a drug target, there are no known specific inhibitors of PFAS activity.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China. Electronic address:
Soil heavy metal pollution presents substantial risks to food security and human health. This study focused on the efficiency of plant growth-promoting fungus-Beauveria bassiana FE14 and Miscanthus floridulus on the synergistic remediation of soil Cd contamination. Results revealed that B.
View Article and Find Full Text PDFPlant Physiol
January 2025
Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Str. 2, 30419 Hannover, Germany.
The vacuole is an important site for RNA degradation. Autophagy delivers RNA to the vacuole, where the vacuolar T2 RNase Ribonuclease 2 (RNS2) plays a major role in RNA catabolism. The presumed products of RNS2 activity are 3'-nucleoside monophosphates (3'-NMPs).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China.
Stylo () exhibits excellent tolerance to low-phosphate (Pi) availability, but the underlying mechanisms responsible for improving the phosphorus (P) utilization efficiency (PUE) remain unclear. This study employed metabolomics, lipidomics, and gene expression analyses to investigate the differential responses to low-Pi stress between the high-PUE genotype CF047827 and the cultivar Reyan No. 2.
View Article and Find Full Text PDFFront Parasitol
April 2024
INRS- Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
Extracellular vesicles released by the protozoan parasite display immunomodulatory properties towards mammalian immune cells. In this study, we have evaluated the potential of extracellular vesicles derived from the non-pathogenic protozoan towards the development of a vaccine adjuvant. As a proof of concept, we expressed in a codon-optimized SARS-CoV-2 Spike protein fused to the secreted acid phosphatase signal peptide in the N-terminal and to a 6×-His stretch in the C-terminal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!