In this chapter, we have considered the theoretical and practical background of bone marrow transplantation. The immune response and its regulation by genes within the major histocompatibility complex, particularly of the I region of the mouse and of the HLA-D/DR region in man, is of central importance in both graft acceptance (rejection) and graft-versus-host disease. Methods which are available for typing alleles at the HLA-A, -C, -B, -DR and complotype (BF, C2, C4A, C4B) loci, have been considered in detail. The extent to which recombination affects specific alleles on haplotypes within families is discussed, as is the occurrence of linkage disequilibrium and extended haplotypes in populations of unrelated individuals. Because the HLA-DR and complotype region in man is thought to be critical for the success of bone marrow transplantation, methods for typing of HLA-D by both the HTC and PLT approaches have been examined. Although HLA-D/DR assignments are easily made in normal subjects, they are ambiguous in about 50 per cent of candidates for bone marrow transplantation, including, particularly, patients with aplastic anaemia, leukaemia, and severe combined immunodeficiency. In this setting, it is particularly important to obtain additional information by modification of HLA-D typing procedures and through complotype and GLO allele determinations in all family members. Finally, we can hope that there will be an increased possibility of using non-family donors through methods for removing cytotoxic T cells from donor marrow and through the identification, in the general population, of individuals who are genotypically similar or identical to the recipient. In this regard, the recognition that some 30 per cent of chromosome 6 in caucasians (50 per cent of individuals) bear extended haplotypes, which include a relatively fixed set of alleles particularly in the HLA-B, -DR, complotype and GLO regions, offers considerable promise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0308-2261(83)80004-6DOI Listing

Publication Analysis

Top Keywords

bone marrow
16
marrow transplantation
12
region man
8
methods typing
8
-dr complotype
8
extended haplotypes
8
complotype glo
8
marrow
5
mhc human
4
bone
4

Similar Publications

Background: No studies have evaluated the impact of the cement distribution as classified on the basis of the fracture bone marrow edema area (FBMEA) in magnetic resonance imaging (MRI) on the efficacy of percutaneous vertebral augmentation (PVA) for acute osteoporotic vertebral fractures.

Methods: The clinical data of patients with acute, painful, single-level thoracolumbar osteoporotic fractures were retrospectively analyzed. The bone cement distribution on the postoperative radiograph was divided into 4 types according to the distribution of the FBMEA on the preoperative MRI.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS) that is usually diagnosed between the ages of 20 and 40. Changes in the immune system also observed in cancer may suggest a higher prevalence of cancer in the MS patient population. In recent years, many highly effective immunosuppressive drugs have been introduced into disease-modifying therapy (DMT) which may be associated with a higher risk of cancer development in patients with MS.

View Article and Find Full Text PDF

ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy.

View Article and Find Full Text PDF

Elevated circulating levels of calprotectin (CAL), the S100A8/A9 heterodimer, are biomarkers of severe systemic inflammation. Here, we investigate the effects of CAL on early human hematopoiesis. CAL demonstrates limited impact on gene expression in stem and progenitor cells, in contrast with interleukin-6 (IL6), which promotes the expression of the and genes in hematopoietic progenitors and the generation of monocytes that release CAL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!