This study was conducted to determine whether multivalent, precipitating antigens are required for formation of subepithelial electron-dense immune deposits in glomeruli. 2-nitro-4-azidophenyl (NAP) was conjugated with variable density to human serum albumin (HSA) to yield nonprecipitating (NAP3.1 X HSA and NAP11.4 X HSA) and precipitating (NAP19.7 X HSA) antigens with antibodies to the hapten. These antigen preparations were cationized with ethylene diamine to enhance deposition in renal glomeruli due to interaction with the fixed negative charges in the glomerular capillary wall. Following injection into the left renal artery of rats these antigens alone persisted in the glomeruli for a relatively short time by immunofluorescence microscopy. When antibodies to NAP were injected intravenously after the antigen injection, the nonprecipitating antigens and antibodies were detectable in the glomeruli by immunofluorescence microscopy up to 8 h, comparable to antigen alone. Electron-dense deposits were not formed in these glomeruli. In contrast, when the precipitating antigen was injected and followed by antibodies to the hapten, antigen and antibody were detected by immunofluorescence microscopy through 96 h. In these specimens electron-dense deposits were present from 40 min through 96 h and after 24 h the deposits were present only in the subepithelial area. The same results were obtained when the nonprecipitating hapten-carrier conjugates were followed with antibodies to the carrier molecule. These data indicate that the persistence of immune deposits by immunofluorescence microscopy and the formation of electron-dense deposits in the subepithelial area require a precipitating antigen-antibody system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187360PMC
http://dx.doi.org/10.1084/jem.158.4.1259DOI Listing

Publication Analysis

Top Keywords

immunofluorescence microscopy
16
immune deposits
12
electron-dense deposits
12
precipitating antigen-antibody
8
required formation
8
formation subepithelial
8
subepithelial electron-dense
8
electron-dense immune
8
antigens antibodies
8
antibodies hapten
8

Similar Publications

The bone is a highly dynamic organ that undergoes continuous remodeling through an intricate balance of bone formation and degradation. Hyperactivation of the bone-degrading cells, the osteoclasts (OCs), occurs in disease conditions and hormonal changes in females, resulting in osteoporosis, a disease characterized by altered microarchitecture of the bone tissue, and increased bone fragility. Thus, building robust assays to quantify OC resorptive activity to examine the molecular mechanisms underlying bone degradation is critical.

View Article and Find Full Text PDF

Using HBmito Crimson to Observe Mitochondrial Cristae Through STED Microscopy.

Bio Protoc

January 2025

Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University. Baoding, China.

Mitochondrial cristae, formed by folding the mitochondrial inner membrane (IM), are essential for cellular energy supply. However, the observation of the IM is challenging due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vitro probes specifically targeting the IM. Here, we describe a detailed imaging protocol for the mitochondrial inner membrane using the Si-rhodamine dye HBmito Crimson, which has excellent photophysical properties, to label live cells for imaging via stimulated emission depletion (STED) microscopy.

View Article and Find Full Text PDF

Four-color single-molecule imaging system for tracking GPCR dynamics with fluorescent HiBiT peptide.

Biophys Physicobiol

September 2024

Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.

Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques.

View Article and Find Full Text PDF

The apicomplexan parasite has a complex life cycle. Access to sexual stages and sporozoite-containing oocysts, essential for studying the parasite's environmental transmission, is limited and requires animal experiments with cats. Thus, alternatives and resource-efficient methods are needed.

View Article and Find Full Text PDF

Purpose: Kuiyangling is a traditional Chinese medicine formula used for the treatment of ulcerative colitis, but the specific mechanism remains unclear. Imbalance in NETs regulation is one of the important factors contributing to the onset of ulcerative colitis (UC). The HuR/VDR signaling pathway plays a significant role in restoring the intestinal mucosal barrier in UC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!