Suppressor-cell activity of 26 SLE patients suffering from active disease was compared to that of 15 healthy controls. ConA-induced and spontaneous suppression was evaluated. The mitogen-driven proliferation of normal allogeneic cells was significantly impaired by ConA-induced as well as spontaneous suppressor cells. However, no difference in suppressor-cell activity could be demonstrated between SLE patients and controls.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0171-2985(82)80105-8DOI Listing

Publication Analysis

Top Keywords

suppressor-cell activity
12
sle patients
8
normal suppressor-cell
4
activity systemic
4
systemic lupus
4
lupus erythematosus
4
erythematosus study
4
study cases
4
cases suppressor-cell
4
activity sle
4

Similar Publications

Depletion of myeloid-derived suppressor cells sensitizes murine multiple myeloma to PD-1 checkpoint inhibitors.

J Immunother Cancer

January 2025

Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA

Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.

View Article and Find Full Text PDF

Myeloid-Derived Suppressor Cell Accumulation Drives Intestinal Fibrosis through mCCL6/hCCL15 Chemokine-Mediated Fibroblast Activation.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China.

Intestinal fibrosis, a severe complication of Crohn's disease (CD), is linked to chronic inflammation, but the precise mechanism by which immune-driven intestinal inflammation leads to fibrosis development is not fully understood. This study investigates the role of myeloid-derived suppressor cells (MDSCs) in intestinal fibrosis in CD patients and a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse model. Elevated MDSCs are observed in inflamed intestinal tissues prior to fibrosis and their sustained presence in fibrotic tissues of both CD patients and murine models.

View Article and Find Full Text PDF

Background: The cancer cell marker poliovirus receptor-like protein 4 (PVRL4) has been shown to be highly expressed in many cancers, including lung cancer. Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells with immunosuppressive roles that can attenuate the anticancer response. Here, the precise functions and the relationship between PVRL4 and MDSCs in lung adenocarcinoma (LUAD) progression were investigated.

View Article and Find Full Text PDF

20(S)-ginsenoside Rg3 alleviates DSS-induced colitis by promoting ERK-dependent maturation of MDSCs into M2 macrophages.

Biomed Pharmacother

January 2025

College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea. Electronic address:

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with immunosuppressive functions that play various roles in tumors and inflammatory diseases. In colitis, MDSCs accumulate in the inflamed colon, where they mature into M2-polarized macrophages and modulate inflammatory responses. Ginsenosides, active components of ginseng, have been shown to display colitis-alleviating effects in mouse models.

View Article and Find Full Text PDF

Preventive vaccination is a crucial strategy for controlling and preventing infectious diseases, offering both effectiveness and cost-efficiency. However, despite the widespread success of vaccination programs, there are still certain population groups who struggle to mount adequate responses to immunization. These at-risk groups include but are not restricted to the elderly, overweight individuals, individuals with chronic infections and cancer patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!