A family was studied in which two inherited defects of the non-alpha-globin cluster segregate: Greek hereditary persistence of fetal hemoglobin (HPFH) and beta-thalassemia. Fragments of the non-alpha-globin cluster from two patients were cloned in cosmid and phage lambda vectors, and assigned to either the HPFH or beta-thalassemic chromosome on the basis of the demonstration of a polymorphic BglII site in the HPFH gamma-globin cluster. The thalassemic beta-globin gene carries a mutation at nucleotide 1 of the intervening sequence I, known to cause beta zero-thalassemia; the beta-globin gene from the HPFH chromosome is entirely normal, both in the intron-exon sequence and in 5' flanking regions required for transcription. As the compound HPFH/beta-thalassemia heterozygote synthesizes HbA, these data prove that the HPFH beta-globin gene is functional, although at a decreased rate; its lower activity is likely to be due to a distant mutation. The HPFH A gamma-globin gene shows only two mutations: a T----C substitution in the large intervening sequence (responsible for the BglII polymorphic site) and a C----T substitution 196 nucleotides 5' to the cap site; the 5' flanking sequence is normal up to -1350 nucleotides upstream from the gene. Circumstantial evidence suggests that the mutation at -196 may be responsible for the abnormally high expression of the A gamma-globin gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC557743PMC
http://dx.doi.org/10.1002/j.1460-2075.1984.tb02187.xDOI Listing

Publication Analysis

Top Keywords

beta-globin gene
12
greek hereditary
8
hereditary persistence
8
persistence fetal
8
fetal hemoglobin
8
non-alpha-globin cluster
8
hpfh gamma-globin
8
intervening sequence
8
gamma-globin gene
8
hpfh
6

Similar Publications

This study presents the hematological and genetic analysis of a child with severe β-thalassemia harboring triple heterozygous mutations. The child, diagnosed with anemia at the age of 1 year, became transfusion-dependent and maintained a hemoglobin level of 72.00-84.

View Article and Find Full Text PDF

Background/objectives: Beta-thalassemia (BTH), a genetic disorder resulting from beta-globin gene mutations, affects over 1.5 million people globally. The disorder's multifactorial impact on male fertility, particularly through oxidative stress (OS), warrants focused study.

View Article and Find Full Text PDF

Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells.

Cell Rep

January 2025

Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

The most severe form of α-thalassemia results from loss of all four copies of α-globin. Postnatally, patients face challenges similar to β-thalassemia, including severe anemia and erythrotoxicity due to the imbalance of β-globin and α-globin chains. Despite progress in genome editing treatments for β-thalassemia, there is no analogous curative option for α-thalassemia.

View Article and Find Full Text PDF

Circulating biomarkers associated with pediatric sickle cell disease.

Front Mol Biosci

December 2024

Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.

Introduction: Sickle cell disease (SCD) is a genetic blood disorder caused by a mutation in the HBB gene, which encodes the beta-globin subunit of hemoglobin. This mutation leads to the production of abnormal hemoglobin S (HbS), causing red blood cells to deform into a sickle shape. These deformed cells can block blood flow, leading to complications like chronic hemolysis, anemia, severe pain episodes, and organ damage.

View Article and Find Full Text PDF

Introduction: β-thalassemia is a common genetic disease mainly caused by point mutations in the β-globin gene, eliciting a high prevalence in South China. The aim of the present study is to identify a rare HBB: c.316-90 A > G variant and provide the clinical and hematological features in two unrelated Chinese families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!