Interpretation of ECG records from patients who have sophisticated pacemakers is often difficult. To address this problem, radiofrequency telemetry of diagnostic data is now being provided in varying forms from such pacemakers. A particularly useful aid to ECG analysis is offered by transmission of a Marker Channel which provides detailed information regarding occurrence and timing of pacing and sensing events. Use of the Marker Channel in combination with an appropriate programmer makes it possible to obtain ECGs with fully diagrammed pacemaker operation in minutes, with sufficient detail to free the user from the need to memorize unique pacemaker characteristics. This system is described and sample records are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1540-8159.1984.tb05678.x | DOI Listing |
Front Psychiatry
January 2025
Feneryolu Medical Center, Üsküdar University, Istanbul, Türkiye.
Introduction: Major Depressive Disorder (MDD) leads to dysfunction and impairment in neurological structures and cognitive functions. Despite extensive research, the pathophysiological mechanisms and effects of MDD on the brain remain unclear. This study aims to assess the impact of MDD on brain activity using EEG power spectral analysis and asymmetry metrics.
View Article and Find Full Text PDFJ Neurochem
January 2025
Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia.
GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.
View Article and Find Full Text PDFPharmacol Res
January 2025
NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,Southern Medical University, Guangzhou 510515, China; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China. Electronic address:
Macrophages play crucial roles in regulating both homeostatic and inflammatory responses, with classical activated (M1) and alternatively activated (M2) subsets defined by the surrounding micro-environment. Renal fibrosis, developed from persistent inflammation, is worsened by M2 macrophages, yet the precise mechanisms underlying macrophage M2 polarization remain unclear. In this study, we investigated the role of Kv1.
View Article and Find Full Text PDFAugmented extracellular matrix (ECM) stiffness is a mechanical hallmark of cancer. Mechanotransduction studies have extensively probed the mechanisms by which ECM stiffness regulates intracellular communication. However, the influence of stiffness on intercellular communication aiding tumor progression in three-dimensional microenvironments remains unknown.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.
Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!