A monoclonal antibody to estrogen receptor (JS34/32) is able to recognize, in the calf uterine cytosol, a protein (approximately 65 000 daltons) giving a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Two molecules of this antibody are able to simultaneously interact with the native 8S form of the receptor present in the calf uterine cytosol ("twin antibody" assay). This indicates the presence of two antigenic determinants on the "low-salt" 8S form of the receptor. This form of the receptor shows an increase in Mr from 345 000 to 665 000 after interaction with the soluble antibody. Dissociating agents that induce the dissociation of the 8S form to smaller forms also induce the dissociation of the two antigenic determinants. The 4S "high-salt" form of the estrogen receptor has one determinant per molecule, appearing to be the smallest form of the receptor not containing repetitive structures associated with the steroid binding site. The nuclear receptor also shows the presence of more than one antigenic determinant on its molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00312a018 | DOI Listing |
Curr Top Dev Biol
January 2025
Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States. Electronic address:
All-trans RA (ATRA) is a small molecule derived from retinol (vitamin A) that directly controls gene expression at the transcriptional level by serving as a ligand for nuclear ATRA receptors. ATRA is produced by ATRA-generating enzymes that convert retinol to retinaldehyde (retinol dehydrogenase; RDH10) followed by conversion of retinaldehyde to ATRA (retinaldehyde dehydrogenase; ALDH1A1, ALDH1A2, or ALDH1A3). Determining what ATRA normally does during vertebrate development has been challenging as studies employing ATRA gain-of-function (RA treatment) often do not agree with genetic loss-of-function studies that remove ATRA via knockouts of ATRA-generating enzymes.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Unlabelled: The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses.
View Article and Find Full Text PDFUnlabelled: Biomolecular condensates organize cellular environments and regulate key processes such as transcription. We previously showed that full-length androgen receptor (AR-FL), a major oncogenic driver in prostate cancer (PCa), forms nuclear condensates upon androgen stimulation in androgen-sensitive PCa cells. Disrupting these condensates impairs AR-FL transcriptional activity, highlighting their functional importance.
View Article and Find Full Text PDFSarcopenia, which diminishes lifespan and healthspan in the elderly, is commonly exacerbated by viral pneumonia, including influenza and COVID-19. In a study of influenza A pneumonia in mice, young mice fully recovered from sarcopenia, while older mice did not. We identified a population of tissue-resident skeletal muscle macrophages that form a spatial niche with satellite cells and myofibers in young mice but are lost with age.
View Article and Find Full Text PDFUnlabelled: As the principal lipid transporter in the human brain, apolipoprotein E (ApoE) is tasked with the transport and protection of highly vulnerable lipids required to support and remodel neuronal membranes, in a process that is dependent on ApoE receptors. Human allele variants that encode proteins differing only in the number of cysteine (Cys)-to-arginine (Arg) exchanges (ApoE2 [2 Cys], ApoE3 [1 Cys], ApoE4 [0 Cys]) comprise the strongest genetic risk factor for sporadic Alzheimer's disease (AD); however, the molecular feature(s) and resultant mechanisms that underlie these isoform-dependent effects are unknown. One signature feature of Cys is the capacity to form disulfide (Cys-Cys) bridges, which are required to form disulfide bridge-linked dimers and multimers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!