Interaction of alpha-D-mannopyranosyl phosphate with diphenyl phosphochloridate gave the trisubstituted pyrophosphate which was converted through the reaction with nucleoside 5'-phosphates into nucleoside 5'-(alpha-D-mannopyranosyl)pyrophosphates. The method was used for preparation of guanosine diphosphate mannose analogs derived from adenine, purine, 2-aminopurine, 2-amino-6-methoxypurine, 2-amino-6-chloropurine, and 2-amino-6-mercaptopurine. These analogs are necessary for study on substrate specificity of mannosyltransferases of Salmonella O-specific polysaccharides biosynthesis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

guanosine diphosphate
8
diphosphate mannose
8
[specificity enzymes
4
enzymes salmonella
4
salmonella o-antigen
4
o-antigen biosynthesis
4
biosynthesis synthesis
4
synthesis sugar
4
sugar nucleotides
4
nucleotides glycosyl
4

Similar Publications

Oncogenic mutant KRAS inhibition through oxidation at cysteine 118.

Mol Oncol

January 2025

Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy.

Specific reactive oxygen species activate the GTPase Kirsten rat sarcoma virus (KRAS) by reacting with cysteine 118 (C118), leading to an electron transfer between C118 and nucleoside guanosine diphosphate (GDP), which causes the release of GDP. Here, we have mimicked permanent oxidation of human KRAS at C118 by replacing C118 with aspartic acid (C118D) in KRAS to show that oncogenic mutant KRAS is selectively inhibited via oxidation at C118, both in vitro and in vivo. Moreover, the combined treatment of hydrogen-peroxide-producing pro-oxidant paraquat and nitric-oxide-producing inhibitor N(ω)-nitro-l-arginine methyl ester selectively inhibits human mutant KRAS activity by inducing oxidization at C118.

View Article and Find Full Text PDF

Data-Driven Equation-Free Dynamics Applied to Many-Protein Complexes: The Microtubule Tip Relaxation.

Biophys J

January 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States. Electronic address:

Microtubules (MTs) constitute the largest components of the eukaryotic cytoskeleton and play crucial roles in various cellular processes, including mitosis and intracellular transport. The property allowing MTs to cater to such diverse roles is attributed to dynamic instability, which is coupled to the hydrolysis of GTP (guanosine-5'-triphosphate) to GDP (guanosine-5'-diphosphate) within the β-tubulin monomers. Understanding the equilibrium dynamics and the structural features of both GDP- and GTP-complexed MT tips, especially at an all-atom level, remains challenging for both experimental and computational methods because of their dynamic nature and the prohibitive computational demands of simulating large, many-protein systems.

View Article and Find Full Text PDF

The small GTPase MRAS is a broken switch.

Nat Commun

January 2025

Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada.

Intense research on founding members of the RAS superfamily has defined our understanding of these critical signalling proteins, leading to the premise that small GTPases function as molecular switches dependent on differential nucleotide loading. The closest homologs of H/K/NRAS are the three-member RRAS family, and interest in the MRAS GTPase as a regulator of MAPK activity has recently intensified. We show here that MRAS does not function as a classical switch and is unable to exchange GDP-to-GTP in solution or when tethered to a lipid bilayer.

View Article and Find Full Text PDF

Key Interaction Changes Determine the Activation Process of Human Parathyroid Hormone Type 1 Receptor.

J Am Chem Soc

January 2025

Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.

The parathyroid hormone type 1 receptor (PTH1R) plays a crucial role in modulating various physiological functions and is considered an effective therapeutic target for osteoporosis. However, a lack of detailed molecular and energetic information about PTH1R limits our comprehensive understanding of its activation process. In this study, we performed computational simulations to explore key events in the activation process, such as conformational changes in PTH1R, Gs protein coupling, and the release of guanosine diphosphate (GDP).

View Article and Find Full Text PDF

Unlabelled: Guanosine triphosphate (GTP) is essential for macromolecular biosynthesis, and its intracellular levels are tightly regulated in bacteria. Loss of the alarmone (p)ppGpp disrupts GTP regulation in , causing cell death in the presence of exogenous guanosine and underscoring the critical importance of GTP homeostasis. To investigate the basis of guanosine toxicity, we performed a genetic selection for spontaneous mutations that suppress this effect, uncovering an unexpected link between GTP synthesis and glycolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!