We showed previously that fresh Leu-2+ T cells respond to autologous antigen-primed Leu-3+ T cells by proliferation and differentiation into suppressor T cells (Ts) that specifically inhibit the response of fresh Leu-3+ cells to the original priming antigen. This study was undertaken to characterize the role of various cell surface molecules expressed by antigen-primed Leu-3+ cells in their activation of Leu-2+ Ts cells. Alloactivated Leu-3+ blasts were treated in the absence of complement with a variety of monoclonal antibodies recognizing distinct antigens on human lymphoid cells, and then were examined for their functional effects on fresh autologous T cells. Prior treatment of Leu-3+ blasts with anti-Leu-4 or anti-HLA-A,B,C framework antibodies, but not with anti-Leu-1, anti-Leu-3, anti-Leu-5, or anti-HLA-DR framework-specific antibodies, not only blocked proliferation of fresh Leu-2+ cells, it also prevented their differentiation into Ts cells. Furthermore, after their activation by Leu-3+ blasts, Leu-2+ Ts cells inhibited the response of fresh Leu-3+ cells from only those individuals who shared HLA-A,B phenotypes with suppressor-effector cells. These results suggest that both the inductive and effector phases of suppression involve dual recognition of autologous class I MHC molecules and structures associated with the Leu-4 (T3) molecule on the surface of antigen-reactive Leu-3+ cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

leu-3+ cells
20
leu-2+ cells
16
cells
14
leu-3+ blasts
12
dual recognition
8
class mhc
8
mhc molecules
8
fresh leu-2+
8
leu-3+
8
antigen-primed leu-3+
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!