Primary cultures of neonatal murine brain have been reported to express multiple receptors that regulate adenylate cyclase activity. Since for the most part these results were obtained with mixed cell cultures, it has been difficult to define receptor profiles for specific cell types. With this concern in mind a series of studies has been initiated designed to identify specific receptors present on highly purified, immunocytochemically defined astroglia derived from the cerebral cortices of neonatal rats. In this study the capacity of a variety of peptide hormones to regulate cyclic AMP metabolism in these cells was examined. Fibroblasts derived from the meninges represent a predictable source of contamination in primary CNS culture. Thus, to assign more clearly specific receptors to the astroglial cell population, receptor-mediated regulation of cyclic AMP accumulation was also examined in fibroblasts. Cyclic AMP accumulation in astroglia was stimulated by catecholamines (acting at beta 1-adrenergic receptors), prostaglandin E1, vasoactive intestinal polypeptide, alpha-melanocyte-stimulating hormone, and adrenocorticotropin. Bombesin, luteinizing hormone-releasing hormone, neurotensin, thyrotropin-releasing hormone, somatostatin, secretin, and vasopressin did not significantly increase cyclic AMP levels in these cultures. Catecholamines, acting at alpha 2-adrenergic receptors, and somatostatin inhibited agonist-stimulated cyclic AMP accumulation. In meningeal cell cultures catecholamines (acting at beta 2- and alpha 2-adrenergic receptors) and prostaglandin E1 regulated cyclic AMP levels. However, vasoactive intestinal peptide did not stimulate and somatostatin did not inhibit cyclic AMP accumulation in these cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.1984.tb06688.x | DOI Listing |
Cell
January 2025
Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China. Electronic address:
Androgens, such as 5α-dihydrotestosterone (5α-DHT), regulate numerous functions by binding to nuclear androgen receptors (ARs) and potential unknown membrane receptors. Here, we report that the androgen 5α-DHT activates membrane receptor GPR133 in muscle cells, thereby increasing intracellular cyclic AMP (cAMP) levels and enhancing muscle strength. Further cryoelectron microscopy (cryo-EM) structural analysis of GPR133-Gs in complex with 5α-DHT or its derivative methenolone (MET) reveals the structural basis for androgen recognition.
View Article and Find Full Text PDFCytokine
January 2025
Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China; Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China. Electronic address:
Background: Immune checkpoint inhibitors has opened up new avenues for cancer treatment, but serious cardiac injury has emerged in their use. A large number of data have shown that abnormal activation of cytosolic DNA-sensing cyclic GMP-AMP synthase-interferon gene activator pathway is closely related to cardiovascular inflammation and autoimmune diseases. However, the pathophysiological function of the cGAS-STING cascade in myocarditis induced by Immune checkpoint inhibitors is unclear.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611-0910.
Pharmacological elevation of cyclic AMP (cAMP) of cultured cumulus-oocyte complexes (COC) before or coincident with initiation of maturation has been reported to improve outcomes for various systems for in vitro production of embryos. Here it was hypothesized that artificial elevation of cAMP in the oocyte for a 2-h period of prematuration would improve developmental competence of matured oocytes and result in increased blastocyst yield and altered expression of genes important for embryonic differentiation. Treated COC were cultured for 2 h with dibutyryl cAMP (dbcAMP), a membrane-permeable form of cAMP, and 3-isobutyl-1-methylxanthine (IBMX), which inhibits phosphodiesterases that convert cAMP to ATP.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
The cyclic GMP-AMP synthase (cGAS)-stimulator of the interferon genes (STING) pathway plays a key role in triggering interferon and inflammatory responses against microbial invasion or tumor. However, aberrant activation of the cGAS-STING pathway is associated with a variety of inflammatory and autoimmune diseases, and thus inhibition of STING is regarded as a potential new approach to treating these diseases. Herein, we report a series of novel indolyl-urea derivatives as STING inhibitors.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.
Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!