X3, a monoclonal antibody of unusual specificity, is described. This antibody reacts with one or more cytokeratin polypeptides and also reacts with an avian (chicken, quail) nuclear antigen that appears to be present in all cell types (chicken) tested, although with variable staining pattern and intensity. This antigen is distinct from the cytokeratins but does have an epitope in common with this class of proteins. It disappears from the nucleus during the early stages of cell division and reappears during anaphase as a granular cytoplasmic structure. In late telophase the antigen is relocated in the nucleus. This antigen, which we have designated as avian-specific nuclear antigen ( AVNA ), is not associated with chromatin or ribonucleoproteins. From immunoblotting experiments on chicken fibroblast nuclei, AVNA is probably a complex composed of one or several polypeptides, one of which has a molecular weight of approximately 60 kD. The proteins were identified as nuclear matrix proteins rather than pore complex-lamina proteins by immunoblotting experiments on the purified nuclear matrix of chicken erythrocytes. The major polypeptide had a molecular weight of 60 kD and the minor polypeptide a molecular weight of 69 kD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.240240102DOI Listing

Publication Analysis

Top Keywords

nuclear antigen
12
molecular weight
12
monoclonal antibody
8
epitope common
8
avian-specific nuclear
8
immunoblotting experiments
8
nuclear matrix
8
polypeptide molecular
8
antigen
6
nuclear
5

Similar Publications

Cell-free hemoglobin released from hemolysis induces programmed cell death through iron overload and oxidative stress in grass carp (Ctenopharyngodon idella).

Fish Shellfish Immunol

January 2025

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China. Electronic address:

Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue.

View Article and Find Full Text PDF

Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.

View Article and Find Full Text PDF

In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.

View Article and Find Full Text PDF

Rates of PSMA PET Staging and Positivity in Newly Diagnosed Prostate Cancer in a National Health Care System.

J Nucl Med

January 2025

Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan;

Prostate-specific membrane antigen (PSMA) PET was approved by the U.S. Food and Drug Administration in 2020 for the staging of newly diagnosed prostate cancer, yet rates of adoption and real-world positivity rates are unknown.

View Article and Find Full Text PDF

Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof of principle, we tested whether this strategy of radionuclide-induced drug engagement for release (RAiDER) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing off-target exposure to activated chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!