Protein constituents at the subunit interface of rat liver ribosomes were analysed by cross-linking with the bifunctional reagent, diepoxybutane (distance between reactive groups 4 A). Isolated 40S and 60S subunits were labelled with 125I and recombined with unlabelled complementary subunits. The two kinds of selectively labelled 80S ribosomes were treated with diepoxybutane at low concentration. Radioactive ribosomal proteins covalently attached to the rRNA of the unlabelled complementary subparticles were isolated by repeated gradient centrifugation. The RNA-bound, labelled proteins were identified by two-dimensional gel electrophoresis. The experiments showed that proteins S2, S3, S4, S6, S7, S13, and S14 in the small subunit of rat liver ribosomes are located at the ribosomal interface in close proximity to 28S rRNA. Similarly, proteins L3, L6, L7, and L8 were found at the the interface of the large ribosomal subunit in the close vicinity of 18S rRNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC553049 | PMC |
http://dx.doi.org/10.1002/j.1460-2075.1982.tb01174.x | DOI Listing |
Acc Chem Res
March 2025
Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
ConspectusProteins and peptides occur ubiquitously in organisms and play key functional roles, as structural elements and catalysts. Their major natural source is ribosomal synthesis, which produces polypeptides from 20 amino acid building blocks. Peptides containing noncanonical amino acids have long been prepared by chemical synthesis, which has provided a wealth of physiologically active compounds.
View Article and Find Full Text PDFBMC Cancer
March 2025
Department of Infectious Diseases, Zhuji People's Hospital of Zhejiang Province, No. 9 Jianmin Road, Taozhu Street, Zhuji City, Shaoxing City, Zhejiang Province, 311800, China.
Background: Although Cell growth regulator with EF-hand domain 1 (CGREF1) has been predicted to be upregulated in multiple cancer types, its definitive function role in carcinogenesis, particularly in hepatocellular carcinoma (HCC), remains poorly characterized.
Methods: Comprehensive bioinformatics analysis was initially conducted using the University of ALabama at Birmingham CANcer data analysis Portal (UALCAN) and Gene Expression Profiling Interactive Analysis (GEPIA) databases to investigate CGREF1 mRNA expression patterns in HCC tissues and their clinical correlation with patient survival outcomes. Experimental validation was subsequently performed through real-time quantitative polymerase chain reaction (RT-qPCR), immunohistochemistry (IHC), and Western blot techniques.
Nat Commun
March 2025
Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany.
During mitosis, chromosomes condense and decondense to segregate faithfully and undamaged. The exact molecular mechanisms are not well understood. We identify the DEAD-box helicase eIF4A1/2 as a critical factor in this process.
View Article and Find Full Text PDFMedicine (Baltimore)
March 2025
Department of Cardiology, Changsha Institute of Cardiovascular Medicine, Changsha Fourth Hospital, Changsha, China.
Mitochondrial dysfunction has been implicated in the pathogenesis of aortic aneurysms (AA); however, the causal role of mitochondrial-related proteins remains unclear. This study employs a Mendelian randomization (MR) approach to investigate the potential causal relationship between mitochondrial proteins and AA. Genetic instruments for mitochondrial proteins were obtained from the IEU Open genome-wide association study database, while AA-related genetic data were sourced from the FinnGen biobank.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China.
Mutations in the gene result in Nijmegen breakage syndrome (NBS), and the gene encodes NBS1 that forms a complex with MRE11 and RAD50 and participates in DNA damage repair. However, the molecular mechanism by which mutations cause clinical phenotypes of NBS, such as craniofacial dysmorphism, is still unclear. Here, we show that NBS1 localizes at the ribosomal DNA (rDNA) loci in nucleoli and interacts with ribosomal RNA (rRNA) transcription machinery including RNA polymerase I (Pol I) and TCOF1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!