With the use of the strain-overproducer restriction endonuclease R.EcoRV was isolated and purified to homogeneity. The molecular mass of the enzyme was determined by gel filtration and polyacrylamide gel electrophoresis to be 25 000 daltons. According to the data of immunological tests R.EcoRV differs in its antigenic characteristics from restriction endonucleases R.EcoRI and R.EcoRII. Dependence of enzyme activity on pH, ionic strength, temperature, presence of divalent cations (Mn2+, Mg2+, Co2+, Zn2+, Ni2+ and Cd2+) and organic solvents (glycerol, dimethylsulfoxide, ethanol) has been studied. It was shown that under conditions of replacement of Mg2+ for Mn2+ or after addition of organic solvents relaxation of R.EcoRV specificity takes place. It was shown also that R.EcoRV is able to digest T-even bacteriophage DNAs with different types and extents of modification. DNA modified by the action of MR.EcoRV system in vivo is susceptible to R.EcoRV in vitro. Under conditions of relaxed specificity noncanonical sites are susceptible to R.EcoRV attack. The fragments resulted may be cloned in canonical pBR322 EcoRV site.

Download full-text PDF

Source

Publication Analysis

Top Keywords

organic solvents
8
susceptible recorv
8
recorv
6
[ecorv restrictase
4
restrictase physical
4
physical catalytic
4
catalytic properties
4
properties homogenous
4
homogenous enzyme]
4
enzyme] strain-overproducer
4

Similar Publications

Nanoization of Technical Pesticides: Facile and Smart Pesticide Nanocapsules Directly Encapsulated through "On Site" Metal-Polyphenol Coordination Assembly for Improved Efficacy and Biosafety.

J Agric Food Chem

January 2025

State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Facile pesticide nanocapsules were successfully prepared by directly encapsulating the antisolvent precipitation of pesticides through instantaneous "on site" coordination assembly of tannic acid and Fe, avoiding tedious preparation, time consumption, and large amounts of organic solvents. The pesticide nanocapsules showed excellent resistance to ultraviolet photolysis and rainwater washing owing to the nanocapsule walls. The smart pesticide nanocapsules exhibited the controlled release of pesticides under multidimensional stimuli, such as acidic/alkaline pH, glutathione, HO, phytic acid, laccase, tannase, and sunlight, which were related to the physiological and natural environments of crops, pests, and pathogens.

View Article and Find Full Text PDF

This contribution uses a rapid microwave-assisted hydrothermal synthesis method to produce a vanadium-based K1.92Mn0.54V2O5·H2O cathode material (quoted as KMnVOH).

View Article and Find Full Text PDF

Two π-radical complexes containing bisazo-aromatic-centered radical anion (1•-) were synthesized through in-situ electron transfer from metal-to-ligand using [IrI] and 2-(2-Pyridylazo)azobenzene (1) in inert hydrocarbon solvent. These are characterized as diradical [IrIII(1•-)2]+[2]+ and monoradical [IrIII(1•-)Cl2(PPh3)] 3. In contrast, a rare metal-mediated hydrolytic cleavage of the C(sp2)-N bond occurred in protic solvent resulting in quaternary radical complex [IrIII(1•-)(1')(PPh3)]+(4)+.

View Article and Find Full Text PDF

Recent advances in optical heavy water sensors.

Chem Commun (Camb)

January 2025

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.

DO and HO, as two important solvents with very similar properties, play a pivotal role in nuclear industrial production, life and scientific research. Unfortunately, DO and HO are highly susceptible to contamination by each other, so effective qualitative and quantitative analyses of both are necessary. This review comprehensively discusses the progress in optical sensing for the detection of a trace amount of HO in heavy water or , mainly including five types of analytical systems: inorganic nanocrystals, carbon-based nanomaterials, lanthanide complexes, organic polymers, and organic small molecules.

View Article and Find Full Text PDF

Lignin has emerged as a sustainable alternative to fossil-based polymers in advanced materials such as photonics. However, current methods for preparing photonic lignin materials are limited by non-benign organic solvents and low production yields. In this work, we present a highly efficient process that enables the production of photonic glasses with yields ranging from 48% to 72%, depending on the size of the lignin nanoparticles obtained from herbaceous soda lignin, softwood kraft lignin, and hardwood organosolv lignin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!