The content, biosynthesis and template activity of poly(A)+ RNA in the early stages of sea urchin development have been studied. The amount of poly(A)+ RNA reaches a maximum at the middle blastula stage in polyribosomes and at the 8-blastomere stage in the cytoplasm. Poly(A)+ RNA synthesis becomes noticeable at the 64-blastomere stage and the spectrum of newly synthesized molecules is different from that at the middle blastula stage. The products of translation in vitro of poly(A)+ RNA at all the stages studied show insignificant differences and contain a major group of polypeptides of molecular mass 10-20 kDa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(84)80227-6DOI Listing

Publication Analysis

Top Keywords

polya+ rna
16
rna early
8
middle blastula
8
blastula stage
8
polya-containing rna
4
early embryogenesis
4
embryogenesis sea
4
sea urchins
4
urchins content
4
content biosynthesis
4

Similar Publications

Sexual dimorphism in lung transcriptomic adaptations in fetal alcohol spectrum disorders.

Respir Res

January 2025

Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.

Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.

View Article and Find Full Text PDF

ASH2L-Mediated H3K4 Methylation and Nephrogenesis.

J Am Soc Nephrol

January 2025

Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.

Background: Many congenital anomalies of the kidney and urinary tract involve deficits in the number of nephrons, which are associated with a higher risk of hypertension and chronic kidney disease later in life. Prior work has implicated histone modifications in regulating kidney lineage-specific gene transcription and nephron endowment. Our earlier study suggested that ASH2L, a core subunit of the H3K4 methyltransferase complex, plays a role in ureteric bud morphogenesis during mammalian kidney development.

View Article and Find Full Text PDF

Recycling of Uridylated mRNAs in Starfish Embryos.

Biomolecules

December 2024

Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan.

In eukaryotes, mRNAs with long poly(A) tails are translationally active, but deadenylation and uridylation of these tails generally cause mRNA degradation. However, the fate of uridylated mRNAs that are not degraded quickly remains obscure. Here, using tail-seq and microinjection of the 3' region of mRNA, we report that some mRNAs in starfish are re-polyadenylated to be translationally active after deadenylation and uridylation.

View Article and Find Full Text PDF

MARTRE family proteins negatively regulate CCR4-NOT activity to protect poly(A) tail length and promote translation of maternal mRNA.

Nat Commun

January 2025

Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

Article Synopsis
  • The study focuses on the role of a newly discovered protein family called MARTRE in regulating the poly(A) tail length of maternal mRNA during early embryo development in mice.
  • MARTRE proteins inhibit the deadenylase CCR4-NOT, helping to maintain longer poly(A) tails and enhance mRNA translation efficiency.
  • Deleting the Martre genes leads to shortened poly(A) tails, reduced mRNA translation, and delays in early embryonic development, emphasizing the importance of MARTRE in the translation of maternal mRNA.
View Article and Find Full Text PDF

The Vsr-like protein FASTKD4 regulates the stability and polyadenylation of the MT-ND3 mRNA.

Nucleic Acids Res

December 2024

The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia.

Expression of the compact mitochondrial genome is regulated by nuclear encoded, mitochondrially localized RNA-binding proteins (RBPs). RBPs regulate the lifecycles of mitochondrial RNAs from transcription to degradation by mediating RNA processing, maturation, stability and translation. The Fas-activated serine/threonine kinase (FASTK) family of RBPs has been shown to regulate and fine-tune discrete aspects of mitochondrial gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!