Two brothers with developmental delay and unusual cranial configurations were found to have agenesis of the corpus callosum (ACC) by CT scan. Six published families in which ACC occurred in the absence of extracranial malformations are reviewed. No single mode of inheritance can account for all of these familial cases. This family illustrates the value of CT scanning in evaluating children with developmental delay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1049170 | PMC |
http://dx.doi.org/10.1136/jmg.20.6.416 | DOI Listing |
Genes (Basel)
January 2025
Perinatal Pathology Consulting, 490 Dogwood Valley Drive, Atlanta, GA 30342, USA.
Oropouche virus (OROV) is an orthobunyavirus endemic in the Brazilian Amazon that has caused numerous outbreaks of febrile disease since its discovery in 1955. During 2024, Oropouche fever spread from the endemic regions of Brazil into non-endemic areas and other Latin American and Caribbean countries, resulting in 13,014 confirmed infections. Similarly to other orthobunyaviruses, OROV can undergo genetic reassortment events with itself as well as other viruses.
View Article and Find Full Text PDFReprod Sci
January 2025
Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
Polycystic ovary syndrome (PCOS) is a common cause of infertility in women, characterized by metabolic and hormonal irregularities. We investigated the effects of placenta-derived mesenchymal stem cells (PDMSCs) and platelet-rich plasma (PRP), as well as their combination on follicular development, hormonal profile, inflammatory parameters, and insulin resistance in a model of PCOS. In this study, 25 female Wistar rats were randomly allocated into five groups: Sham (given a dose of 1 mL of a 0.
View Article and Find Full Text PDFNeurogenetics
January 2025
Department of Pediatrics, Erciyes University, Faculty of Medicine, Kayseri, Turkey.
The cytoskeleton, composed of microtubules, intermediate filaments and actin filaments is vital for various cellular functions, particularly within the nervous system, where microtubules play a key role in intracellular transport, cell morphology, and synaptic plasticity. Tubulin-specific chaperones, including tubulin folding cofactors (TBCA, TBCB, TBCC, TBCD, TBCE), assist in the proper formation of α/β-tubulin heterodimers, essential for microtubule stability. Pathogenic variants in these chaperone-encoding genes, especially TBCD, have been linked to Progressive Encephalopathy with Brain Atrophy and Thin Corpus Callosum (PEBAT, OMIM #604,649), a severe neurodevelopmental disorder.
View Article and Find Full Text PDFAim: The aim of this study is to assess associated cerebral supratentorial anomalies in patients who underwent myelomeningocele repair in hopes of developing a better morphological apprehension of the forebrain's anomalies in this category of patients.
Material And Methods: This retrospective observational study assessed 426 pediatric patients who underwent myelomeningocele repair between January 2013 and December 2020. Cranial MRIs with T1- and T2-weighted sequences were obtained as part of the postoperative assessment to determine the presence of associated supratentorial anomalies in pediatric patients following myelomeningocele repair.
Quant Imaging Med Surg
January 2025
Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).
Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!