A bichromatic spectrophotometry study in the near UV spectral range was performed on paper disks impregnated with DNA and RNA in NaCl solutions of different concentrations. Absorbance curves plotted versus a NaCl molarity log-scale degree of polymerization and the solubility of the polynucleotide. The -a/b value, determined by a previously reported equation, appeared to be constant for a given nucleic acid, irrespective of the wavelength in the spectral range 205-280 nm. This phenomenon cannot be attributed to a heterogeneous macroscopic distribution of the nucleic acid throughout the disk.
Download full-text PDF |
Source |
---|
Anal Chem
January 2025
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho Koganei-shi, Tokyo 184-8588, Japan.
Nanopore sensing is widely used for single-molecule detection, originally applied to nucleic acids and now extended to protein sensing. Our study focuses on the complex conformational changes of peptides in nanopores, which may have implications for peptide fingerprinting and protein identification. Specifically, we investigated the interaction of a β-hairpin peptide (SV28) within an α-hemolysin (αHL) nanopore.
View Article and Find Full Text PDFSci Adv
January 2025
Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France.
Bacterial type IV secretion systems (T4SSs) are widespread nanomachines specialized in the transport across the cell envelope of various types of molecules including mobile genetic elements during conjugation. Despite their prevalence in Gram-positive bacteria, including relevant pathogens, their assembly and functioning remain unknown. This study addresses these gaps by investigating VirB8 proteins, known to be central components of conjugative T4SSs in Gram-positive bacteria.
View Article and Find Full Text PDFPLoS One
January 2025
Facultad de Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain.
The budding yeast Xrn1 protein shuttles between the nucleus, where it stimulates transcription, and the cytoplasm, where it executes the major cytoplasmic mRNA decay. In the cytoplasm, apart from catalyzing 5'→3' decay onto non translated mRNAs, Xrn1 can follow the last translating ribosome to degrade the decapped mRNA template, a process known as "cotranslational mRNA decay". We have previously observed that the import of Xrn1 to the nucleus is required for efficient cytoplasmic mRNA decay.
View Article and Find Full Text PDFPLoS One
January 2025
School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea.
The oxidation states of vanadium determine its mobility and toxicity, and dissimilatory vanadate reduction has been reported in several microorganisms, highlighting the potential significance of this pathway in the remediation of vanadium contamination and the biogeochemical cycle. However, to date, most known microorganisms capable of reducing vanadate are Gram-negative respiratory bacteria belonging to the phylum Proteobacteria. In this study, we isolated Tepidibacter mesophilus strain VROV1 from deep-sea sediments on the northern Central Indian Ridge and investigated its ability to reduce vanadium and the impact of vanadate on its cellular metabolism.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
In many simple viruses and virus-like particles, the protein capsid self-assembles around a nucleic-acid genome. Although the assembly process has been studied in detail, relatively little is known about how the capsid disassembles, a potentially important step for infection (in viruses) or cargo delivery (in virus-like particles). We investigate capsid disassembly using a coarse-grained molecular dynamics model of a = 1 dodecahedral capsid and an RNA-like polymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.