Four small nuclear RNAs (snRNAs) have been isolated from Drosophila melanogaster flies. They have been characterized by base analysis, fingerprinting, and injection into Axolotl oocytes. The size of the molecules and the modified base composition suggest that the following correlations can be made: snRNA1 approximately U2-snRNA; snRNA2 approximately U3-snRNA; snRNA3 approximately U4-snRNA; snRNA4 approximately U6-snRNA. The snRNAs injected into Axolotl oocytes move into the nuclei, where they are protected from degradation. The genes coding for these snRNAs have been localized by "in situ" hybridization of 125-I-snRNAs to salivary gland chromosomes. Most of the snRNAs hybridize to different regions of the genome: snRNA1 to the cytological regions 39B and 40AB; snRNA2 to 22A, 82E, and 95C; snRNA3 to 14B, 23D, 34A, 35EF, 39B, and 63A; snRNA4 to 96A. The estimated gene numbers (Southern-blot analysis) are: snRNA1:3; snRNA2:7; snRNA3:7; snRNA4:1-3. The gene numbers correspond to the number of sites labeled on the polytene salivary gland chromosomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC325691 | PMC |
http://dx.doi.org/10.1093/nar/11.1.77 | DOI Listing |
Water Res
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:
To address the challenge of antibiotic-containing wastewater, a novel micromagnetic carrier-modified integrated fixed-film activated sludge system (MC-IFAS) was developed for treating tetracycline (TC)-containing swine wastewater in this study. The magnetic effects of the MC significantly enhanced TC removal by improving TC biosorption and biodegradation in both the suspended activated sludge and the carrier-attached biofilm in the MC-IFAS. The increased electrostatic attraction and number of binding sites in both the activated sludge and the biofilm enhanced their TC biosorption capacities, particularly in the activated sludge.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Purpose: To investigate whether hormone receptor-positive, human epidermal growth factor receptor 2-low (HR+HER2-low) versus HR+HER2-zero early breast cancers have distinct genomic and clinical characteristics.
Methods: This study included HR+, HER2-negative early breast cancers from patients enrolled in the phase III, randomized BIG 1-98 and SOFT clinical trials that had undergone tumor genomic sequencing. Tumors were classified HR+HER2-low if they had a centrally reviewed HER2 immunohistochemistry (IHC) score of 1+ or 2+ with negative in situ hybridization and HR+HER2-zero if they had an HER2 IHC score of 0.
PLoS One
January 2025
Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.
View Article and Find Full Text PDFPLoS One
January 2025
Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain.
Background: Intestinal transplantation (ITx) represents the only curative option for patients with irreversible intestinal failure. Nevertheless, its rejection rate surpasses that of other solid organ transplants due to the heightened immunological load of the gut. Regulatory T-cells (Tregs) are key players in the induction and maintenance of peripheral tolerance, suggesting their potential involvement in modulating host vs.
View Article and Find Full Text PDFPLoS One
January 2025
Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
Thrips tabaci is the main thrips species affecting onion and related species. It is a cryptic species complex comprising three phylogenetic groups characterized by different reproductive modes (thelytoky or arrhenotoky) and host plant specialization. Thrips tabaci populations vary widely in genetic diversity, raising questions about the factor(s) that drive this diversity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!