The development of the carbon tip electrode and its low chronic threshold behavior are described. Compared to presently used electrode material, carbon tip electrodes result in lower chronic stimulation thresholds. In a group of 43 patients, chronic pulse generator output has been favorably reduced in association with this type of electrode. Thus the use of activated carbon tip electrodes may result in the routine implantation of low output pacemakers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1540-8159.1983.tb04385.x | DOI Listing |
ACS Appl Energy Mater
January 2025
Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
This paper reports on several mechanisms of carbon aging in a hybrid lithium-ion capacitor operating with 1 mol L LiPF in an ethylene carbonate/dimethyl carbonate 1:1 vol/vol electrolyte. Carbon electrodes were subjected to a constant polarization protocol (i.e.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia.
In this study, the specific capacitance characteristics of a carbon nanotube (CNT) supercapacitor was predicted using different machine learning algorithms, such as artificial neural network (ANN), random forest regression (RFR), -nearest neighbors regression (KNN), and decision tree regression (DTR), based on experimental studies. The results of the simulation verified the accuracy of the ANN algorithm with respect to the data derived from the specific capacitance of the supercapacitor module. It was observed that there was a strong correlation between the experimental results and the predictions made by the ANN algorithm.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China.
A scalable synthesis method for foldable carbon nanotube-coated cobalt particle electrodes on carbon cloth was established through metal-organic framework gel pyrolysis. These electrodes exhibit excellent bifunctional catalytic activity and enhanced durability, making them highly promising for commercial zinc-air battery applications.
View Article and Find Full Text PDFNat Commun
January 2025
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Designing asymmetrical structures is an effective strategy to optimize metallic catalysts for electrochemical carbon dioxide reduction reactions. Herein, we demonstrate a transient pulsed discharge method for instantaneously constructing graphene-aerogel supports asymmetric copper nanocluster catalysts. This process induces the convergence of copper atoms decomposed by copper chloride onto graphene originating from the intense current pulse and high temperature.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran.
A cost-effective strategy is reported utilizing ionic liquid (IL), 1-hexyl-3-methylimidazolium bisulfate ([HMIM] HSO), to delaminate TiC MXene, thereby enhancing its efficiency in electrocatalyzing tryptophan (Trp) oxidation. The positively charged IL effectively intercalates within the negatively charged MXene layers, fostering structural stability through π-π stacking and electrostatic interactions. Consequently, the resulting IL-TiC composite not only maintained the inherent electronic conductivity of TiC but also significantly augmented its electrocatalytic prowess.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.