An enzyme, esterase A2, which hydrolyzes tosyl-arginine methyl ester was isolated from the urine of female, inbred, Dahl-salt-resistant rats using DEAE-Sephadex ion-exchange, aprotinin-agarose affinity and molecular sieve column chromatography. The purest preparation obtained showed four closely migrating bands on polyacrylamide gel electrophoresis. All four bands of the esterase A2 preparation had enzyme activity since all were stainable on zymograms using N-acetyl-L-methionine alpha-naphthyl ester as substrate. Three of these four bands showed decreased electrophoretic mobility following treatment with neuraminidase, indicating that variable sialic acid content accounts for part of the microheterogeneity. The preparation of esterase A2 used was free of rat urinary kallikrein as shown by radioimmunoassay, electrophoretic and isoelectric focusing experiments. The relative kinin-generating ability of rat urinary kallikrein and esterase A2 was highly dependent on the assay used. Using canine plasma as a source of kininogen and the rat uterus to bioassay kinins, esterase A2 was 47% as active as kallikrein; using pure bovine low-molecular-weight kininogen and a radioimmunoassay to measure generated kinins, esterase A2 was only 6% as active as kallikrein. Esterase activity of A2 was activated non-specifically by proteins and detergents. Esterase A2 was 50% inhibited by an 8-fold molar excess of aprotinin and by a 26.5-fold molar excess of soybean trypsin inhibitor, but ovomucoid inhibitor was not inhibitory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4838(83)90364-3DOI Listing

Publication Analysis

Top Keywords

rat urinary
12
esterase
9
urinary kallikrein
8
kallikrein esterase
8
kinins esterase
8
active kallikrein
8
molar excess
8
isolation partial
4
partial characterization
4
rat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!