The dominant hemoglobin of the adult hamster was detected in yolk-sac erythroid cells, and its identity was confirmed by peptide mapping and by analysis of relevant peptides. Both the presence and active synthesis of two embryonic hemoglobins presumed to exist only in yolk-sac erythroid cells were detected in neonatal liver and spleen. Thus the time span of expression of both embryonic and adult globin genes during mammalian ontogeny may be considerably broader than presently believed.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.6183746DOI Listing

Publication Analysis

Top Keywords

globin genes
8
embryonic adult
8
mammalian ontogeny
8
yolk-sac erythroid
8
erythroid cells
8
simultaneous expression
4
expression globin
4
genes embryonic
4
adult hemoglobins
4
hemoglobins mammalian
4

Similar Publications

NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage.

Mol Med Rep

March 2025

State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China.

Subarachnoid hemorrhage (SAH), a prevalent cerebrovascular condition associated with a high mortality rate, frequently results in neuronal apoptosis and an unfavorable prognosis. The adjunctive use of traditional Chinese medicine (TCM) with surgical interventions exerts a therapeutic impact on SAH, potentially by facilitating apoptosis. However, the mechanism by which TCM mediates apoptosis following SAH remains unclear.

View Article and Find Full Text PDF

Objective: To analyze the correlation between variants in the start codon of the α-globin gene and phenotypes of thalassemia, so as to provide a basis for the diagnosis and prevention of α-thalassemia.

Methods: A retrospective study was conducted on 7 patients diagnosed by Yangjiang People's Hospital and Guangzhou Hybribio Co. Ltd.

View Article and Find Full Text PDF

MYB represses ζ-globin expression through upregulating ETO2.

Acta Biochim Biophys Sin (Shanghai)

January 2025

Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.

Reactivating the embryonic ζ-globin gene represents a potential therapeutic approach to ameliorate the severe clinical phenotype of α-thalassemia and sickle cell disease. The transcription factor MYB has been extensively proven to be a master regulator of the γ-globin gene, but its role in the regulation of ζ-globin remains incompletely understood. Here, we report a mechanistic study on the derepression of ζ-globin both and .

View Article and Find Full Text PDF

Haplotype-Resolved Genotyping and Association Analysis of 1,020 β-Thalassemia Patients by Targeted Long-Read Sequencing.

Adv Sci (Weinh)

December 2024

Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Despite the well-documented mutation spectra of β-thalassemia, the genetic variants and haplotypes of globin gene clusters modulating its clinical heterogeneity remain incompletely illustrated. Here, a targeted long-read sequencing (T-LRS) is demonstrated to capture 20 genes/loci in 1,020 β-thalassemia patients. This panel permits not only identification of thalassemia mutations at 100% of sensitivity and specificity, but also detection of rare structural variants (SVs) and single nucleotide variants (SNVs) in modifier genes/loci.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) and β-thalassemia patients with elevated gamma globin (HBG1/G2) levels exhibit mild or no symptoms. To recapitulate this natural phenomenon, the most coveted gene therapy approach is to edit the regulatory sequences of HBG1/G2 to reactivate them. By editing more than one regulatory sequence in the HBG promoter, the production of fetal hemoglobin (HbF) can be significantly increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!