Equine infectious anemia virus (EIAV) was successfully inoculated onto cell cultures of canine and feline origin, resulting in chronic infections in these cultures. Infection of equine cell cultures, which were the previous sole in vitro source demonstrated for virus production, was also performed for comparative purposes. Determination of the nature of the virus produced in the heterologous as well as the equine cells was accomplished in several ways. SDS-PAGE of purified virus from the different cell lines indicated very similar protein composition. Immunological identity was observed in gel diffusion tests employing an antiserum to the major core protein (p24) of equine-derived EIAV. Competition radioimmunoassays also indicated similar antigenicity in the viruses derived from the several cell lines. Strong relatedness was further demonstrated by hybridization of viral RNAs to EIAV complementary DNA. These data indicate that EIAV has an amphotropic cell culture host range and that the viruses isolated from the permissive lines were similar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000149271 | DOI Listing |
Viruses
December 2024
Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA 30605, USA.
Avian reoviruses (ARVs) represent a significant economic burden on the poultry industry due to their widespread prevalence and potential pathogenicity. These viruses, capable of infecting a diverse range of avian species, can lead to a variety of clinical manifestations, most notably tenosynovitis/arthritis. While many ARV strains are asymptomatic, pathogenic variants can cause severe inflammation and tissue damage in organs such as the tendons, heart, and liver.
View Article and Find Full Text PDFViruses
December 2024
Foundation Plant Services, University of California-Davis, Davis, CA 95616, USA.
Among the cultivated crop species, the economically and culturally important grapevine plays host to the greatest number of distinctly characterized viruses. A critical component of the management and containment of these viral diseases in grapevine is both the identification of infected vines and the characterization of new pathogens. Next-generation high-throughput sequencing technologies, i.
View Article and Find Full Text PDFViruses
December 2024
Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, C.P. 30100 Murcia, Spain.
Mixed infections of plant viruses are common in crops and represent a critical biotic factor with substantial epidemiological implications for plant viral diseases. Compared to single-virus infections, mixed infections arise from simultaneous or sequential infections, which can inevitably affect the ecology and evolution of the diseases. These infections can either exacerbate or ameliorate symptom severity, including virus-virus interactions within the same host that may influence a range of viral traits associated with disease emergence.
View Article and Find Full Text PDFViruses
December 2024
Department of Virus Ecology, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia.
Over the past two decades, plant viral vectors have emerged as a powerful tool for the production of recombinant proteins in plants. Among the different plant viruses engineered to carry foreign genes of interest in their genomes, potyviruses have gained attention due to their polyprotein expression strategy and broad host range. To date, at least eleven different species belonging to the genus have been used for heterologous gene expression in both their natural and experimental hosts.
View Article and Find Full Text PDFUsing BW25113 as a host, we isolated a novel lytic phage from the commercial poly-specific therapeutic phage cocktail Sextaphage (Microgen, Russia). We provide genetic and phenotypic characterization of the phage and describe its host range on the ECOR collection of reference strains. The phage, hereafter named Sxt1, is a close relative of classical coliphage T3 and belongs to the genus, yet its internal virion proteins, forming an ejectosome, differ from those of T3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!