A sensitive, specific immunoassay for detection of hepatitis B surface antigen (HBsAg) is described. The assay combined enzyme-linked immunosorbent assay and solid-phase radioimmunoassay and is termed enzyme potentiated radioimmunoassay (EPRIA). HBsAg was quantitated by enzymatic conversion of L[14C]glutamic acid to 14CO2 and gamma-aminobutyric acid by glutamate decarboxylase (GDC) conjugated wih goat anti-HGs IgG. Conjugation of IgG and GDC was by a thiol-disulfide bond exchange reaction after reacting N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) with each reagent. A positive/negative ratio of 2.2 was established as significant by examination of 40 normal sera negative for HBsAg. This value was the mean cpm plus 3 standard deviations. By an identical statistical analysis of sensitivity, EPRIA was found to be approximately 100-fold more sensitive than Ausria II (Abbott Laboratories, North Chicago, IL).

Download full-text PDF

Source
http://dx.doi.org/10.1016/0022-1759(81)90115-0DOI Listing

Publication Analysis

Top Keywords

enzyme potentiated
8
potentiated radioimmunoassay
8
radioimmunoassay epria
8
detection hepatitis
8
hepatitis surface
8
surface antigen
8
epria sensitive
4
sensitive third-generation
4
third-generation test
4
test detection
4

Similar Publications

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.

View Article and Find Full Text PDF

Background: Lamotrigine clearance can change drastically in pregnant women with epilepsy (PWWE) making it difficult to assess the need for dosing adjustments. Our objective was to characterize lamotrigine pharmacokinetics in PWWE during pregnancy and postpartum along with a control group of nonpregnant women with epilepsy (NPWWE).

Methods: The Maternal Outcomes and Neurodevelopmental Effects of Antiepileptic Drugs (MONEAD) study was a prospective, observational, 20 site, cohort study conducted in the United States (December 2012 and February 2016).

View Article and Find Full Text PDF

Cellulases are an ensemble of enzymes that hydrolyze cellulose chains into fermentable glucose and hence are widely used in bioethanol production. The last enzyme of the cellulose degradation pathway, β-glucosidase, is inhibited by its product, glucose. The product inhibition by glucose hinders cellulose hydrolysis limiting the saccharification during bioethanol production.

View Article and Find Full Text PDF

1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) is a unique thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the formation of DXP, a branchpoint metabolite required for the biosynthesis of vitamins and isoprenoids in bacterial pathogens. DXPS has relaxed substrate specificity and utilizes a gated mechanism, equipping DXPS to sense and respond to diverse substrates. We speculate that pathogens utilize this distinct gated mechanism in different ways to support metabolic adaptation during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!