The penetration of melittin and myelin basic protein into glycosphingolipid monolayers depends on the lipid polar head group, the protein concentration available and the initial surface pressure. The lipid-protein interaction leads to modification of the surface properties of both the glycosphingolipid and the proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1162644PMC
http://dx.doi.org/10.1042/bj1930643DOI Listing

Publication Analysis

Top Keywords

melittin myelin
8
interaction glycosphingolipids
4
glycosphingolipids melittin
4
myelin basis
4
basis protein
4
protein monolayers
4
monolayers penetration
4
penetration melittin
4
myelin basic
4
basic protein
4

Similar Publications

Model membranes composed of various lipid mixtures can segregate into liquid-ordered (Lo) and liquid-disordered (Ld) phases. In this study, lipid vesicles composed of mainly Lo or Ld phases as well as complex lipid systems representing the cytosolic leaflet of the myelin membrane were characterized by fluorescence resonance energy transfer with a donor/acceptor pair that preferentially partitioned into Lo or Ld phases, respectively. The fluidity of the lipid systems containing >30% cholesterol was modulated in the presence of the amphipathic peptide melittin.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a progressive and autoimmune neurodegenerative disease of the central nervous system (CNS). This disease is recognized through symptoms like inflammation, demyelination and the destruction of neurological actions. Experimental allergic encephalomyelitis (EAE) is a widely accepted animal model for MS.

View Article and Find Full Text PDF

Surfactant protein (SP)-D plays an important role in host defense and pulmonary surfactant homeostasis. In SP-D-deficient (Sftpd(-/-)) mice, the abnormal large surfactant forms seen at the ultrastructural level are taken up inefficiently by type II cells, resulting in an over threefold increase in the surfactant pool size. The mechanisms by which SP-D influences surfactant ultrastructure are unknown.

View Article and Find Full Text PDF

Screening a cDNA expression library with a radiolabelled calmodulin (CaM) probe led to the isolation of AtCaMRLK, a receptor-like kinase (RLK) of Arabidopsis thaliana. AtCaMRLK polypeptide sequence shows a modular organization consisting of the four distinctive domains characteristic of receptor kinases: an amino terminal signal sequence, a domain containing seven leucine-rich repeats, a single putative membrane-spanning segment and a protein kinase domain. Using truncated versions of the protein and a synthetic peptide, we demonstrated that a region of 23 amino acids, located near the kinase domain of AtCaMRLK, binds CaM in a calcium-dependent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!