32P-ATP was injected into the L5 dorsal root ganglion and axoplasmic transport of the phosphorylate MA proteins 2, microtubule-associated proteins 2, was observed. After the injection of 32P-ATP, the nerve was dissected out at prescribed time intervals and sliced into 5-mm pieces. Each segment was electrophoresed on an SDS-polyacrylamide slab gel and subjected to autoradiography. A protein of 310,000 dalton was transported at a velocity of 6.6-10.6 mm/day in the axon with the electrophoretic mobility identical to that of MA proteins 2, one of the key components associated with the microtubules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/neu.480120507DOI Listing

Publication Analysis

Top Keywords

axoplasmic transport
8
microtubule-associated proteins
8
transport microtubule-associated
4
proteins
4
proteins rat
4
rat sciatic
4
sciatic nerve
4
nerve 32p-atp
4
32p-atp injected
4
injected dorsal
4

Similar Publications

Anatomical and functional changes after internal limiting membrane peeling.

Surv Ophthalmol

January 2025

Department of Ophthalmology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States. Electronic address:

Internal limiting membrane (ILM) peeling has been an acceptable step in vitrectomy surgeries for various retinal diseases such as macular hole, chronic macular edema following epiretinal membrane (ERM), and vitreoretinal traction. Despite all the benefits, this procedure has some side effects, which may lead to structural damage and functional vision loss. Light and dye toxicity may induce reversible and irreversible retina damage, which will be observed in postoperative optical coherence tomography scans.

View Article and Find Full Text PDF

Synaptic Physiology Depends on Electrical Forces and Liquid-Liquid Phase Separation.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Pre- and post-synaptic events are regulated by liquid-liquid phase separation and this phenomenon requires multiple electrical forces. Both axonal transport and the organization of postsynaptic excitatory and inhibitory receptors are regulated by LLPS, with its mandatory electrical drivers ultimately determining our cognitive health and capacity.

View Article and Find Full Text PDF

Elevation of intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction, leading to neurodegeneration, is the pathological hallmark of primary open-angle glaucoma (POAG). Impaired axonal transport is an early and critical feature of glaucomatous neurodegeneration. However, a robust mouse model that accurately replicates these human POAG features has been lacking.

View Article and Find Full Text PDF

Glaucomatous retinal ganglion cells: death and protection.

Int J Ophthalmol

January 2025

Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an 710038, Shaanxi Province, China.

Glaucoma is a group of diseases characterized by progressive optic nerve degeneration, with the characteristic pathological change being death of retinal ganglion cells (RGCs), which ultimately causes visual field loss and irreversible blindness. Elevated intraocular pressure (IOP) remains the most important risk factor for glaucoma, but the exact mechanism responsible for the death of RGCs is currently unknown. Neurotrophic factor deficiency, impaired mitochondrial structure and function, disrupted axonal transport, disturbed Ca homeostasis, and activation of apoptotic and autophagic pathways play important roles in RGC death in glaucoma.

View Article and Find Full Text PDF

TDP-43 transports ferritin heavy chain mRNA to regulate oxidative stress in neuronal axons.

Neurochem Int

January 2025

Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan; Mount Fuji Research Institute, Yamanashi Prefectural Government, Yamanashi, Japan. Electronic address:

Amyotrophic lateral sclerosis (ALS) is characterized by the mislocalization and abnormal deposition of TAR DNA-binding protein 43 (TDP-43). This protein plays important roles in RNA metabolism and transport in motor neurons and glial cells. In addition, abnormal iron accumulation and oxidative stress are observed in the brain and spinal cord of patients with ALS exhibiting TDP-43 pathology and in animal models of ALS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!