AI Article Synopsis

Article Abstract

Morphological (at the tissue, cellular and subcellular levels) and biochemical (determination of the autolysis intensity, proteolytic activity for casein and BAPNA splitting, the level of oxidation phosphorylation) methods were used to show that a preliminary administration to the animal organism of contrical, an inhibitor of proteases partially prevents the kidneys, which endured a two-hour ischemia from development of irreversible changes, favours the preservation of the renal parenchyma structure, and stabilizes the energy status of cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

[effect protease
4
protease inhibitor
4
inhibitor contrical
4
contrical oxidative
4
oxidative phosphorylation
4
phosphorylation proteolysis
4
proteolysis kidney
4
kidney thermal
4
thermal ischemia]
4
ischemia] morphological
4

Similar Publications

Associations of cathepsins with pulmonary arterial hypertension mediated by circulating metabolites: A Mendelian randomization study.

Medicine (Baltimore)

January 2025

National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.

The correlation between cathepsins and pulmonary arterial hypertension (PAH) is well-established, but the causative link between them remains uncertain. This study aimed to explore the causal role of circulating metabolites mediating cathepsins in PAH using Mendelian randomization (MR). A 2-sample 2-step MR method was used to identify causal relationship between cathepsins and PAH; causal relationship between circulating metabolites and PAH; and mediated effects of these circulating metabolites.

View Article and Find Full Text PDF

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Objective: Using rabbit models, this study simulated the laryngopharynx's response to the synergistic effects of various acidic reflux environments and pepsin to investigate the response mechanism underlying weak acid reflux and pepsin in the mucosal barrier injury of laryngopharyngeal reflux.

Methods: The rabbits were divided into six groups, and the original larynx was recorded for each group. During the study period, rabbits were sprayed with different doses of acid and pepsin solutions and monitored for hypopharyngeal mucosal transient impedance before and after modeling.

View Article and Find Full Text PDF

Transplanted organs are inevitably exposed to ischemia-reperfusion (IR) injury, which is known to cause graft dysfunction. Functional and structural changes that follow IR tissue injury are mediated by neutrophils through the production of oxygen-derived free radicals, as well as from degranulation which entails the release of proteases and other pro-inflammatory mediators. Neutrophil serine proteases (NSPs) are believed to be the principal triggers of post-ischemic reperfusion damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!