We prepared highly purified acetylcholine receptor (AChR)-specific T lymphocytes from rats with experimental autoimmune myasthenia gravis (EAMG). Inbred rats were primed with AChR frm 3 different sources: from the electric organs of Electrophorus electricus and Torpedo californica and from denervated rat muscle. After 20 to 30 days, lymphocytes from regional lymph nodes (primary cells) were challenged with soluble AChR in vitro. The activated blast cells were isolated by density gradient centrifugation and allowed to revert back to small secondary lymphocytes in the absence of antigen. These secondary anti-AChR cells were highly responsive to the type of AChR with which they had been primed. Their reactivity critically depended on help by syngeneic accessory cells. Anti-Electrophorus AChR primary and secondary cells cross-reacted detectably with rat AChR and vice versa, whereas anti-Torpedo AChR primary and secondary cells did not significantly cross-react with Electrophorus or rat AChR. Secondary T cells strongly reactive against rat AChR could be selected in vitro from Electrophorus AChR-primed populations by using rat AChR as selecting stimulant. These cells responded equally well against Electrophorus and rat AChR and thus include autoreactive T cell clones.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rat achr
20
secondary cells
12
achr
10
cells
8
achr primary
8
primary secondary
8
electrophorus rat
8
rat
6
secondary
5
autoimmune rat
4

Similar Publications

Development of Peptide Mimics of the Human Acetylcholine Receptor Main Immunogenic Region for Treating Myasthenia Gravis.

Int J Mol Sci

December 2024

Department of Neurology, Davis School of Medicine, University of California, 1515 Newton Court, Davis, CA 95618, USA.

We have designed and produced 39 amino acid peptide mimics of the and human acetylcholine receptors' (AChRs) main immunogenic regions (MIRs). These conformationally sensitive regions consist of three non-contiguous segments of the AChR α-subunits and are the target of 50-70% of the anti-AChR autoantibodies (Abs) in human myasthenic serum and in the serum of rats with a model of that disease, experimental autoimmune myasthenia gravis (EAMG), induced by immunizing the rats with the electric organ AChR. These MIR segments covalently joined together bind a significant fraction of the monoclonal antibodies (mAbs) raised in rats against electric organ AChR.

View Article and Find Full Text PDF

Denervation-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation and inflammation can result in muscle atrophy. Curcumin and bisdemethoxycurcumin are well known to exhibit an anti-inflammatory effect. In addition, curcumin has been shown to attenuate CaMKII activation in neuronal cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how intense electrical muscle contractions, simulating resistance exercise, affect the expression of acetylcholine receptor (AChR) genes and related signaling pathways in rats.
  • Early recovery showed changes in Agrn and LRP4 gene expressions, while late recovery impacted multiple AChR-related genes and increased protein levels for agrin and MuSK.
  • Importantly, the changes in AChR subunit expressions post-muscle contraction were found to be independent of the mTORC1 signaling pathway, despite mTORC1 activity in the early recovery phase.
View Article and Find Full Text PDF

Introduction: Myasthenia gravis (MG) is an autoimmune disorder. Microvesicle-derived miRNAs have been implicated in autoimmune diseases. However, the role of microvesicle-derived miR-29a-3p in MG remains poorly understood.

View Article and Find Full Text PDF

Background: Neuronal nicotinic acetylcholine receptors (nAChRs) are abundant in the central nervous system (CNS), playing critical roles in brain function. Antigenicity of nAChRs has been well demonstrated with antibodies to ganglionic AChR subtypes (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!