Salivary and pancreatic amylases from the mouse show both structural and quantitative genetic variation encoded within a gene complex on chromosome 3. Two fundamental questions prompted by this variation are whether salivary and pancreatic amylases are derived from different structural genes and whether multiple structural genes are causing the quantitative variation observed in each of the two amylases. These questions were approached by comparing the amylase protein from 12 congenic lines carrying amylase gene complexes derived from different origins. The amylases were purified by affinity chromatography employing the inhibitor cyclohepta-amylose and characterized in terms of amino acid composition, specific activity, molecular weight, and heat stability. They were analyzed by native electrophoresis in polyacrylamide gels and by peptide mapping employing both cyanogen bromide cleavage and restricted proteolysis in the presence of dodecylsulfate. By these techniques, many differences in the structure of pancreatic amylase that were not reflected in the salivary amylase were found among mouse strains. Likewise, a distinct salivary amylase variant was found. These results suggest that independent structural genes exist for the two amylases. Furthermore, by all criteria used, pancreatic amylase from single strains exhibits molecular heterogeneity, whereas heterogeneity was never found for salivary amylase. We conclude that at least four structural genes code for pancreatic amylase while only a single gene, different from any of the pancreatic genes, codes for salivary amylase.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00484242DOI Listing

Publication Analysis

Top Keywords

structural genes
20
salivary amylase
16
pancreatic amylase
12
amylase
10
multiple structural
8
salivary pancreatic
8
pancreatic amylases
8
amylase single
8
genes
6
salivary
6

Similar Publications

The sulfur-related metabolic status of during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target.

Virulence

December 2025

Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

Reciprocal and non-reciprocal effects of clinically relevant SETBP1 protein dosage changes.

Hum Mol Genet

January 2025

Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada.

Many genes in the human genome encode proteins that are dosage sensitive, meaning they require protein levels within a narrow range to properly execute function. To investigate if clinically relevant variation in protein levels impacts the same downstream pathways in human disease, we generated cell models of two SETBP1 syndromes: Schinzel-Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disease (SHD), where SGS is caused by too much protein, and SHD is caused by not enough SETBP1. Using patient and sex-matched healthy first-degree relatives from both SGS and SHD SETBP1 cases, we assessed how SETBP1 protein dosage affects downstream pathways in human forebrain progenitor cells.

View Article and Find Full Text PDF

Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.

View Article and Find Full Text PDF

Phragmites australis is a globally distributed grass species (Poaceae) recognized for its vast biomass and exceptional environmental adaptability, making it an ideal model for studying wetland ecosystems and plant stress resilience. However, genomic resources for this species have been limited. In this study, we assembled a chromosome-level reference genome of P.

View Article and Find Full Text PDF

Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!