Computed transverse section emission tomography using 99mTc with the Anger camera is compared to positron annihilation coincident detection using a ring of crystals and 68Ga. The single-photon system has a line spread function (LSF) of 9 mm full width at half maximum (FWHM) at the collimator and gives a transverse section reconstruction LSF of 11 mm FWHM with 144 views. The positron ring has a LSF of 6 mm at the center with a transverse section reconstruction LSF of 7.5 mm FWHM. Correction for uniformity of detector response and accurate center of rotation determination is essential in both techniques. The signal-to-noise ratio in a reconstruction is diminished by a factor of 1.2 x (number of resolution elements)1/4 over that expected from the average number of events per resolution element. Attenuation compensation causes more noise to appear in the center than the edge for both modes and an average increase in uncertainty of 30%. The effects of attenuation result in more loss of data for positron coincidence imaging than for single-photon imaging even at energies of 80 keV. For a 20-cm cylinder imaged in transverse section, only 20% of the positron annihilation events are not scattered; however, at 140 keV, 40% of the photons are not scattered. The relative crystal efficiency gives single-photon imaging an advantage of 5. On the other hand, the solid angle advantage of positron photon coincidence imaging is about 100 for the comparisons of this paper. Taking these factors into account, we find positron-computed section imaging has a tenfold increase in sensitivity over multiple-view imaging with the scintillation camera, which gives multiple sections but requires camera or patient rotation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004728-197701000-00015DOI Listing

Publication Analysis

Top Keywords

positron annihilation
12
transverse reconstruction
8
reconstruction lsf
8
lsf fwhm
8
coincidence imaging
8
single-photon imaging
8
positron
6
imaging
6
emission computer
4
computer assisted
4

Similar Publications

Objective: Timing calibration is essential for positron emission tomography (PET) system as it enhances timing resolution to improve image quality. Traditionally, positron sources are employed for timing calibration. However, the photons emitted by these sources travel in opposite directions, necessitating that positrons annihilate at multiple locations to collect coincidence data across a greater number of lines of response (LORs).

View Article and Find Full Text PDF

The beta decay of the lightest charmed baryon provides unique insights into the fundamental mechanism of strong and electro-weak interactions, serving as a testbed for investigating non-perturbative quantum chromodynamics and constraining the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters. This article presents the first observation of the Cabibbo-suppressed decay , utilizing 4.5 fb of electron-positron annihilation data collected with the BESIII detector.

View Article and Find Full Text PDF

This research explores how varying proportions of virgin polyethylene terephthalate (vPET) and recycled polyethylene terephthalate (rPET) in vPET-rPET blends, combined with preform thermal conditions during the stretch blow molding (SBM) process, influence PET bottles' microscopic characteristics. Key metrics such as viscosity, density, crystallinity, amorphous phase relaxation, and microcavitation were assessed using response surface methodology (RSM). Statistical analysis, including Analysis of variance (ANOVA) and its power, supported the interpretation of results.

View Article and Find Full Text PDF

Objective: Currently, nasolabial folds are mainly removed by invasive procedures, resulting in long-lasting changes, as non-surgical user-implementable alternatives are scarce and inefficient. For example, the use of coating films for this purpose has thus far faced substantial difficulties because such films should combine the antithetical properties of shrinkability and flexibility. Herein, we challenge this status quo by identifying a polymer that simultaneously exhibits shrinkability and flexibility and using this polymer to develop a cosmetic formulation for immediate and non-invasive nasolabial fold removal.

View Article and Find Full Text PDF

Packing Engineering of Zirconium Metal-Organic Cages in Mixed Matrix Membranes for CO/CH Separation.

Angew Chem Int Ed Engl

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.

Metal-organic cages (MOCs) have been considered as emerging zero-dimensional (0D) porous fillers to generate molecularly homogeneous MOC-based membrane materials. However, the discontinuous pore connectivity and low filler concentrations limit the improvement of membrane separation performance. Herein, we propose the dimension augmentation of MOCs in membranes using three-dimensional (3D) supramolecular MOC networks as filler materials in mixed matrix membranes (MMMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!