The morphology of human scalp hair follicle keratinocytes, cultured on the bovine eye lens capsule, is studied by light and electron microscopy. The hair follicle keratinocytes in the stratified cultures are characterized by the presence of numerous tonofilaments, desmosomes and lysosomes and by the presence of glycogen accumulations. The cells in the upper layers develop a cornified envelope. Moreover, an incomplete basal lamina is found between the capsule and the basal cells. However, some features of epidermal keratinocytes in vivo, such as keratohyalin granules and stratum corneum formation, are absent. Analysis of the polypeptides by sodium dodecylsulfate polyacrylamide gel electrophoresis also reveals differences between the cultured hair follicle cells and epidermis, whilst the patterns of cultured cells and hair follicle sheaths are similar. The morphological and protein biosynthetic aspects of terminal differentiation of the keratinocytes in vitro are correlated. These results are discussed in the light of the findings with cultured epidermal keratinocytes, reported in the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02889868 | DOI Listing |
Biomater Res
January 2025
Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.
View Article and Find Full Text PDFBiomater Res
January 2025
Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
Eur J Pharmacol
January 2025
Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.
Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.
View Article and Find Full Text PDFActa Dermatovenerol Croat
November 2024
Prof. Ana Bakija-Konsuo, MD, PhD, Clinic for Dermatovenerology CUTIS, Vukovarska 22, Dubrovnik, Croatia;
We report the case of an 18-month-old boy who developed a phototoxic skin reaction to terbinafine on his scalp, ears, and face in the form of disseminated erythematous plaques, which resembled subacute lupus erythematosus (SCLE) in their clinical presentation. Skin changes appeared a short time after the boy was exposed to sunlight during the period of time when he was treated with oral terbinafine due to Microsporum canis fungal scalp infection. Tinea capitis is a common dermatophyte infection primarily affecting prepubertal children (1).
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Eye School of Chengdu University of Traditional Chinese Medicine. Ineye Hospital of Chengdu University of Traditional Chinese Medicine, KeyLaboratory of Sichuan Province Ophthalmopathy Prevention & Cureand Visual Function Protection with Traditional Chinese Medicine Laboratory. Electronic address:
Ethnopharmacological Relevance: Dahuang-Gancao decoction (DGD) is a traditional Chinese medicinal formula that is recorded in the Synopsis of the Golden Chamber, and is widely used to treat damp-heat in the body. Since the pathological factors of androgenetic alopecia (AGA) also reflect damp-heat blockage, DGD has great potential for the treatment of AGA and has been used effectively in clinical practice.
Aim Of The Study: The aim of the study was to investigate whether external application of DGD could promote the activation and proliferation of hair follicle stem cells (HFSCs) and improve AGA through the Wnt/β-catenin pathway.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!