The saccharin clearance time technique was used to determine the effect upon nasal mucociliary transport of sine wave oscillations. Nasal air was oscillated at 8 Hz, 14 Hz, and 20 Hz by a loudspeaker attached to a nasal mask. Mucociliary transport was significantly increased at all frequencies with an overall mean rise of 161%. Because sine waves have zero mean pressure and flow, the improvement is more likely to be caused by changes in mucus viscoelasticity or ciliary function rather than by a direct physical effect on mucus velocity. This simple and comfortable technique may have practical application in patients with overproduction or retention of mucus within the nasal passages or intrathoracic airways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0140-6736(84)91997-4 | DOI Listing |
ACS Nano
January 2025
Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
The development of a inhaled nanodrug delivery assessment platform is crucial for advancing treatments for chronic lung diseases. Traditional in vitro models and commercial aerosol systems fail to accurately simulate the complex human respiratory patterns and mucosal barriers. To address this, we have developed the breathing mucociliary-on-a-chip (BMC) platform, which replicates mucociliary clearance and respiratory dynamics in vitro.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain.
The pulmonary route for drug administration has garnered a great deal of attention in therapeutics for treating respiratory disorders. It allows for the delivery of drugs directly to the lungs and, consequently, the maintenance of high concentrations at the action site and a reduction in systemic adverse effects compared to other routes, such as oral or intravenous. Nevertheless, the pulmonary administration of drugs is challenging, as the respiratory system tries to eliminate inhaled particles, being the main responsible mucociliary escalator.
View Article and Find Full Text PDFInt J Pharm
January 2025
College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA. Electronic address:
Intranasal drug administration offers a promising strategy for delivering combination antiretroviral therapy (cART) directly to the central nervous system to treat NeuroAIDS, leveraging the nose-to-brain route to bypass the blood-brain barrier. However, challenges such as enzymatic degradation in the nasal mucosa, low permeability, and mucociliary clearance within the nasal cavity must first be addressed to make this route feasible. To overcome these barriers, this study developed solid lipid nanoparticles (SLNs) with varying PEGylation levels (0 %, 5 %, 10 %, and 15 % w/w of PEGylated lipid), co-encapsulated with Elvitegravir (EVG) and Atazanavir (ATZ) as an integrase and protease inhibitor, respectively.
View Article and Find Full Text PDFAm J Otolaryngol
December 2024
Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1000 East Broad St., Richmond, VA, USA. Electronic address:
Background: Allergic rhinitis (AR) and acute non-allergic rhinosinusitis (ARS) often present with similar symptoms. While these are generally differentiated by history and occasionally by secretion cell counts, there are few data temporally comparing these conditions.
Methods: A prospective, observational study was conducted to assess nasal mucus properties, nasal obstruction, nasal secretion cells, and health related QOL during the acute phase (Day 5) and during a later phase of illness (Day 14/28).
Biosensors (Basel)
November 2024
Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
Organ-on-a-chip (OOC) devices mimic human organs, which can be used for many different applications, including drug development, environmental toxicology, disease models, and physiological assessment. Image data acquisition and analysis from these chips are crucial for advancing research in the field. In this study, we propose a label-free morphology imaging platform compatible with the small airway-on-a-chip system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!