Primary cultures of bovine adrenal chromaffin cells provide large quantities of a homogeneous population of target cells for nerve growth factor (NGF) and, thus, are a suitable system for studying the molecular mechanism of action of NGF. In this study, we have shown that NGF mediates the specific induction of the key enzymes in catecholamine biosynthesis, tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH), and phenylethanolamine-N-methyltransferase (PNMT). Acetylcholinesterase (AChE), an enzyme which catalyzes the breakdown of acetylcholine, is also induced by NGF. We have compared NGF-mediated TH and AChE induction and have provided pharmacological evidence that TH induction involves a post-transcriptional, polyadenylation-dependent event (blockable by 9-beta-arabinofuranosyladenine but not by alpha-amanitin), whereas AChE induction requires transcription (blockable by alpha-amanitin). DBH and PNMT appear to be regulated via the same mechanism as TH. The time course of TH induction is such that NGF must be continuously present for at least the first 36 hr (during which time TH levels remain unchanged), and then the entire increase takes place during the subsequent 12 hr. In contrast, AChE induction proceeds linearly with time of NGF exposure. These data suggest that there may be multiple mechanisms by which NGF regulates enzyme induction. We have also compared the effects of cAMP with those of NGF. As compared to NGF, cAMP produces a different pattern of enzyme induction (in addition to TH, DBH, PNMT, and AChE, dopa decarboxylase (DDC) is also induced), it acts rapidly (a 12-hr exposure produces the full effect), and it acts only at the transcriptional level (its effects are blocked by alpha-amanitin). These data provide evidence that cAMP does not act as a second messenger for NGF with regard to enzyme induction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6564870 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.04-07-01771.1984 | DOI Listing |
Mol Biol Rep
January 2025
Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
Colorectal cancer (CRC) remains a major global health burden, necessitating innovative preventive approaches. (), known for its extensive pharmacological properties, has shown potential in cancer therapy. This study investigates the chemopreventive efficacy of methanolic extract of (MEA) in an azoxymethane (AOM)-induced murine model of CRC, with a focus on its antioxidant, biomarker modulation, and pro-apoptotic activities.
View Article and Find Full Text PDFMolecules
January 2025
Escuela Profesional de Farmacía y Bioquímica, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04000, Peru.
Epilepsy is a chronic neurological disorder that affects nearly 50 million people worldwide. Experimental evidence suggests that epileptic neurons are linked to the endocannabinoid system and that inhibition of the FAAH enzyme could have neuroprotective effects by increasing the levels of endogenous endocannabinoid anandamide. In this context, the use of macamides as therapeutic agents in neurological diseases has increased in recent years.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Although pancreatic cancer presents with one of the most unfavorable prognoses, its treatment options are very limited. Mitochondria-targeting moieties, considered a new and prominent treatment modality, are expected to demonstrate synergistic anticancer effects due to their distinct mechanism compared to conventional chemotherapeutic approaches. This study evaluated the therapeutic potential of mitochondria-accumulating self-assembly peptides, referred to as Mito-FFs, utilizing both in vitro and in vivo pancreatic cancer models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!