The effects of the calcium entry blockers nifedipine, (-)-verapamil and the dihydropyridine derivative PY 108-068 were evaluated on the increase in diastolic pressure of pithed normotensive rats caused by the selective alpha 1-adrenoceptor agonists cirazoline, (-)-phenylephrine, (+/-)-erythro-methoxamine, (-)-amidephrine and St 587 [(2-chloro-5-trifluoromethylphenylimino)-2-imidazolidine] as well as by the mixed alpha 1/alpha 2-adrenoceptor agonists clonidine and DPI [(3,4-dihydroxyphenylimino)-2-imidazolidine]. The calcium entry inhibitors (up to 3 mg/kg) caused 3- to 5-fold, parallel rightward shifts of the log dose-pressor effect curves to cirazoline, (-)-phenylephrine, (+/-)-erythro-methoxamine and (-)-amidephrine accompanied by only a slight depression of the maximal pressor response. In contrast, the calcium entry inhibitors produced a dose-dependent profound depression of both maximum and slope of the log dose-pressor response curves to St 587 and clonidine. For DPI about 10- and 100-fold parallel displacements to the right without reduction of the maximum were found following treatment with 1 and 3 mg/kg of nifedipine, respectively. Infusion of vasopressin to counteract the vasodilatory action produced by the calcium entry inhibitors did not significantly change the pattern of interference observed under the conditions of decreased baseline diastolic pressure. The results indicate that alpha 1-adrenoceptor-mediated vasoconstriction in the pithed normotensive rat, which is characterized by its sensitivity to blockade by prazosin and its relative insensitivity to antagonism by yohimbine or rauwolscine, can be subdivided into two distinct processes which are differentially influenced by blockade of calcium entry.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00502618DOI Listing

Publication Analysis

Top Keywords

calcium entry
20
entry inhibitors
12
entry blockers
8
alpha 1-adrenoceptor-mediated
8
1-adrenoceptor-mediated vasoconstriction
8
diastolic pressure
8
pithed normotensive
8
cirazoline --phenylephrine
8
--phenylephrine +/--erythro-methoxamine
8
+/--erythro-methoxamine --amidephrine
8

Similar Publications

Potential of emodepside for vector-borne disease control.

Malar J

January 2025

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Background: Emodepside is an anthelmintic used in veterinary medicine that is currently under investigation in human clinical trials for the treatment of soil-transmitted helminths and possibly Onchocerca volvulus. Emodepside targets the calcium-activated voltage-gated potassium slowpoke 1 (SLO-1) channels of presynaptic nerves of pharynx and body wall muscle cells of nematodes leading to paralysis, reduced locomotion and egg laying, starvation, and death. Emodepside also has activity against Drosophila melanogaster SLO-1 channels.

View Article and Find Full Text PDF

The TRP Channels Serving as Chemical-to-Electrical Signal Converter.

Physiol Rev

January 2025

Department of Physiology and Membrane Biology, University of California, Davis, School of Medicine, Davis CA, 95616, USA.

Biology uses many signaling mechanisms. Among them, calcium and membrane potential are two prominent mediators for cellular signaling. TRPM4 and TRPM5, two calcium-activated monovalent cation-conducting ion channels, offer a direct linkage between these two signals.

View Article and Find Full Text PDF

The experience of pregnancy affects uterine function well beyond delivery. We previously demonstrated that the response to oxytocin is more robust in the uteri of proven breeder rats. This study investigates the contribution of T-type calcium channels (TTCCs) and L-type calcium channels (LTCCs) to the distinct response of virgin (V) and proven breeder (PB) rat uteri to oxytocin.

View Article and Find Full Text PDF

Hippocampal dendritic spines store-operated calcium entry and endoplasmic reticulum content is dynamic microtubule dependent.

Sci Rep

January 2025

Laboratory of Biomedical Imaging and Data Analysis, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.

One of the mechanisms of calcium signalling in neurons is store-operated calcium entry (SOCE), which is activated when the calcium concentration in the smooth endoplasmic reticulum (ER) decreases and its protein-calcium sensor STIM (stromal interacting molecule) relocate to the endoplasmic reticulum and plasma membrane junctions, forms clusters and induces calcium entry. In electrically non-excitable cells, STIM1 is coupled with the positive end of a tubulin microtubule through interaction with EB1 (end-binding) protein, which controls its oligomerization, SOCE and participates in ER movement. STIM2 homologue, which is specific for mature hippocampal dendritic spines, is known to interact with EB3 protein, however, not much is known about the role of this interaction in STIM2 clustering or ER trafficking in neurons.

View Article and Find Full Text PDF

Background: Dystonia is a common neurological hyperkinetic movement disorder that can be caused by mutations in anoctamin 3 (ANO3, TMEM16C), a phospholipid scramblase and ion channel. We previously reported patients that were heterozygous for the ANO3 variants S651N, V561L, A599D and S651N, which cause dystonia by unknown mechanisms.

Methods: We applied electrophysiology, Ca measurements and cell biological methods to analyze the molecular mechanisms that lead to aberrant intracellular Ca signals and defective activation of K channels in patients heterozygous for the ANO3 variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!