A procedure is described for the assay of inorganic pyrophosphatase in tissues by a microcolorimetric procedure, taking advantage of the marked color intensification of phosphomolybdate by malachite green. Conditions are described for optimum enzyme activity, color stability, and sensitivity. With 1-cm cuvettes the AM660 is 100,000, allowing accurate measurement of Pi in the 1-nmol range. Reaction is conducted at 25 degrees C for 10 min in 0.5 ml of a 50 mM histidine buffer, pH 7.2, containing 0.2 mM inorganic pyrophosphate and 4 mM Mg2+, terminated by addition of 0.05 ml 2.4 M HClO4, cooled in ice, and 0.45 ml of color reagent is added. After standing 10 min at 0 degrees C, the contents are transferred to 1-cm cuvettes and the absorbance is read at 660 nm. Blanks are low, nonenzymatic hydrolysis of PPi is negligible, and color is stable without addition of detergents. The high sensitivity makes this procedure well-adapted to measurement of optimal activities in crude tissue preparations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0003-2697(83)90657-7 | DOI Listing |
Sci Rep
January 2025
Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
Co-pyrolysis is an efficient approach for municipal sewage sludge (SS) treatment, facilitating the production of biochar and promoting the stabilization and removal of heavy metals, particularly when combined with chlorinated materials. This study explores the impact of pyrolysis temperatures (400 °C and 600 °C) and chlorinated additives (polyvinyl chloride (PVC) as an organic chloride source and ferric chloride (FeCl) as an inorganic chloride source) at 10% and 20% concentrations, on the yield, chemical speciation, leachability, and ecological risks of arsenic (As), chromium (Cr), and zinc (Zn) in biochar derived from SS. The results revealed that increasing the pyrolysis temperature from 400 to 600 °C significantly reduced biochar yield due to enhanced volatilization of organic components, as well as the removal of heavy metals in interaction with chlorinated materials.
View Article and Find Full Text PDFNat Commun
January 2025
Cary Institute of Ecosystem Studies, Millbrook, NY, USA.
Previous estimates of deep soil inorganic nitrogen (N) reservoirs have been mainly limited to desert soils, however, recent evidence suggests that deep soil pools are far more ubiquitous across biomes and therefore may be important for global N budgets. Here, we used observations from 280 deep soil profiles (2-205 m) across a wide array of ecosystem and land cover types to seek insight into the full geospatial variation of deep soil nitrate. Using a random forest machine learning approach we estimate a total deep soil nitrate pool of 15.
View Article and Find Full Text PDFSci Rep
January 2025
Nanning Center for Disease Control and Prevention, Nanning, 530021, Guangxi, China.
Nowadays rice has become one of the world's staple foods. Rice in southern China is also a staple food for everyone, however, with the development of China's industrialization model, many industrial areas may be contaminated by heavy metals, leading to contamination of the agricultural areas. With the development of recent years, Nanning has become a heavily industrial development area, and rice is also a favourite staple food.
View Article and Find Full Text PDFFood Chem
January 2025
Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.
The present study included the environmentally friendly production of stable nickel nanoparticles (NiO NPs) using lemon and tomato, followed by their analysis and evaluation for their antibacterial properties against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. The Nickel oxide nanoparticles produced exhibited their maximum absorption at 276 nm in the UV-vis spectrum. The image captured FESEM revealed smooth nanofibers with an average diameter of around 259 ± 3.
View Article and Find Full Text PDFWater Res
January 2025
Department of Civil and Environmental Engineering, University of Florence, Via di S. Marta, 3, 50139, Firenze, Italy.
The performance of Upflow Anaerobic Sludge Blanket (UASB) bioreactors treating sulfate (SO) -rich effluents depends on multiple factors, including microbial interactions and operational conditions. The high complexity of these systems necessitates the use of mathematical modelling tools to better understand the process and predict the long-term impacts of various operational variables. In this work, a mathematical model describing the long-term operation of a sulfate-fed 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!