Growth and regulation of heterocyst and nitrogenase by fixed nitrogen sources were studied comparatively in parent and glutamine auxotrophic mutant of Anabaena cycadeae. The parent strain grew well on N2, NH+4 or glutamine while the mutant strain grew on glutamine but not on N2 or NH+4. The total lack of active glutamine synthetase in the mutant strain thus appears to be the reason for its observed lack of growth in N2 or NH+4, which explains why it is a glutamine auxotroph and at the same time shows glutamine synthetase to be the sole primary ammonia assimilating enzyme. NH+4 repression of heterocyst and nitrogenase in the mutant and the parental strains and their derepression by L-methionine-DL-sulfoximine suggest that NH+4 per se and not glutamine synthetase mediated pathway of ammonia assimilation is the initial repressor signal of heterocyst and nitrogenase in A. cycadeae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-291x(83)80133-8DOI Listing

Publication Analysis

Top Keywords

heterocyst nitrogenase
16
glutamine synthetase
12
anabaena cycadeae
8
strain grew
8
nh+4 glutamine
8
mutant strain
8
glutamine
7
nh+4
5
evidence ammonia
4
ammonia inhibitor
4

Similar Publications

Nanoscale elemental and morphological imaging of nitrogen-fixing cyanobacteria.

Metallomics

October 2024

Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA.

Nitrogen-fixing cyanobacteria bind atmospheric nitrogen and carbon dioxide using sunlight. This experimental study focused on a laboratory-based model system, Anabaena sp., in nitrogen-depleted culture.

View Article and Find Full Text PDF

spp. diatoms contain obligate, nitrogen-fixing endosymbionts, or diazoplasts, derived from cyanobacteria. These algae are a rare example of photosynthetic eukaryotes that have successfully coupled oxygenic photosynthesis with oxygen-sensitive nitrogenase activity.

View Article and Find Full Text PDF

In the genome of the heterocystous cyanobacterium Calothrix sp. NIES-4101 (NIES-4101), the four genes essential for nitrogen fixation (nifB, nifH, nifD and nifK) are highly fragmented into 13 parts in a 350-kb chromosomal region, and four of these parts are encoded in the reverse strand. Such a complex fragmentation feature makes it difficult to restore the intact nifBHDK genes by the excision mechanism found in the nifD gene of the Anabaena sp.

View Article and Find Full Text PDF

Under nitrogen-limiting conditions, the filamentous cyanobacterium Nostoc PCC7120 differentiates nitrogen-fixing heterocysts at semi-regular intervals along filaments generating a periodic pattern of two distinct cell types. Heterocysts are micro-oxic cells that host the oxygen-sensitive nitrogenase allowing two antagonistic activities to take place simultaneously. Although several factors required to control the differentiation process are known, the molecular mechanisms engaged have only been elucidated for a few of them.

View Article and Find Full Text PDF

The open ocean is an extremely competitive environment, partially due to the dearth of nutrients. Trichodesmium erythraeum, a marine diazotrophic cyanobacterium, is a keystone species in the ocean due to its ability to fix nitrogen and leak 30 to 50% into the surrounding environment, providing a valuable source of a necessary macronutrient to other species. While there are other diazotrophic cyanobacteria that play an important role in the marine nitrogen cycle, is unique in its ability to fix both carbon and nitrogen simultaneously during the day without the use of specialized cells called heterocysts to protect nitrogenase from oxygen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!