The analysis of the initial-rate kinetics of the liver mitochondrial acetyl-CoA acetyltransferase (acetoacetyl-CoA thiolase) in the direction of acetoacetyl-CoA synthesis under product inhibition was performed. 1. Acetyl-CoA acetyltransferase shows a hyperbolic response of reaction velocity to changes in acetyl-CoA concentrations with an apparent Km of 0.237 +/- 0.001 mM. 2. CoASH is a (non-competitive) product inhibitor with a Kis of 22.6 microM and shifts the apparent Km for acetyl-CoA to the physiological concentration of this substrate in mitochondria (S0.5 = 1.12 mM in the presence of 121 microM CoASH). 3. CoASH causes a transformation of the Michaelis-Menten kinetics into initial-rate kinetics with four intermediary plateau regions. 4. The product analogue desulpho-CoA triggers a negative cooperativity as to the dependence of the reaction velocity on the acetyl-CoA concentration. These product effects drastically desensitize the acetyl-CoA acetyltransferase in its reaction velocity response to the acetyl-CoA concentrations and simultaneously extend the substrate dependence range. Thus a control of acetoacetyl-CoA synthesis by the substrate is established over the physiological acetyl-CoA concentration range. We suggest that this control mechanism is the key in establishing the rates of ketogenesis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

acetyl-coa acetyltransferase
16
initial-rate kinetics
12
reaction velocity
12
acetyl-coa
9
mitochondrial acetyl-coa
8
intermediary plateau
8
plateau regions
8
acetoacetyl-coa synthesis
8
acetyl-coa concentrations
8
acetyl-coa concentration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!