We describe the production and characterization of actinomycin D labeled with 15N at all twelve nitrogen positions. Cultures of Streptomyces parvulus were incubated in the presence of racemic [15N]glutamic acid and, following an initial delay, labeled antibiotic was produced. Evidence is presented that the D enantiomorph of glutamic acid was ultimately used for actinomycin biosynthesis. The 15N NMR spectrum at 10.14 and 20.47 MHz of the labeled drug in CDCl3 is presented. All nitrogens except the phenoxazone chromophore nitrogen are inverted when spectra are obtained under broad-band proton irradiation conditions. All 15N resonances have been assigned, and the proton-nitrogen one-bond coupling constants were determined in CDCl3 to be 92.5 +/- 0.3 Hz for the valine and threonine amide protons by both 1H and 15N NMR. 15N NMR spectra were also obtained in dimethyl sulfoxide, methanol, and water in order to probe solvent interactions with the peptide nitrogens and carbonyl groups. Large downfield shifts (greater than 5 ppm) were seen for the Pro, sarcosine, and methylvaline resonances when the solvent was changed from dimethyl sulfoxide to water. Smaller downfield shifts were observed for the Val and Thr peaks. These results are discussed in terms of a model for the solution conformation of the actinomycin pentapeptide rings based on different hydrogen-bonding interactions in the monomer in organic solvents and the dimer which is formed in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00268a027 | DOI Listing |
J Phys Chem B
January 2025
School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901-6632, United States.
The antibiotic metronidazole (MNZ) has gained interest as a potential MRI contrast agent for imaging hypoxia. N-labeled MNZ can be efficiently hyperpolarized via SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), but the envisioned MRI approach requires that MNZ rapidly undergoes structural changes in hypoxic environments with significant N frequency differences manifested in its downstream metabolic products. We have performed NMR studies of the anticipated metabolic product amino-MNZ (despite anticipated stability concerns) accompanied by computational density functional theory (DFT) studies to predict the N chemical shifts of different relevant species.
View Article and Find Full Text PDFJ Biomol NMR
January 2025
Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM), University of Florence, Florence, Italy.
Intrinsically disordered proteins and protein regions are central to many biological processes but difficult to characterize at atomic resolution. Nuclear magnetic resonance is particularly well-suited for providing structural and dynamical information on intrinsically disordered proteins, but existing NMR methodologies need to be constantly refined to provide greater sensitivity and resolution, particularly to capitalise on the potential of high magnetic fields to investigate large proteins. In this paper, we describe how N-detected 2D NMR experiments can be optimised for better performance.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.
ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
Reline, which is composed of choline chloride and urea in a molar ratio of 1:2, is the first and most extensively studied deep eutectic solvent (DES). In certain applications, reline is blended with organic solvents, dimethyl sulfoxide (DMSO) in most cases, to gain improved properties. Therefore, it is crucial to have a profound understanding of the impact of DMSO on the dynamics and structures of the species in the binary mixtures.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Organic Chemistry, University Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
In ion-pair catalysis, the last intermediate structures prior to the stereoselective transition states are of special importance for predictive models due to the high isomerization barrier between - and -substrate double bonds connecting ground and transition state energies. However, in prior experimental investigations of chiral phosphoric acids (CPA) solely the early intermediates could be investigated while the key intermediate remained elusive. In this study, the first experimental structural and conformational insights into ternary complexes with CPAs are presented using a special combination of low temperature and relaxation optimized N HSQC-NOESY NMR spectroscopy to enhance sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!