Infiltration of the mesentery after intraperitoneal implantation of two transplantable rat leukemias, the undifferentiated L5222 and the myeloid BNML, was studied by means of scanning and transmission electron microscopy, and microcinematography. In animals implanted with L5222 cells, contraction of the mesenteric mesothelium is a conspicuous feature. It occurs within the first 24h after implantation and influences decisively the course of infiltration. In contrast, The presence of BNML cells leads to mesothelial contraction only in the terminal stage and, therefore, exerts no direct effect on infiltration. In addition, the two leukemias differ with regard to their cellular motility. Whereas L5222 cells locomote within the mesentery, only stationary movements are recorded with BNML cells. Based on the different interactions with the mesothelium and cell motilities, two distinct modes of infiltrating the mesentery could be ascertained for the two rat leukemias.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02889152DOI Listing

Publication Analysis

Top Keywords

rat leukemias
12
scanning transmission
8
transmission electron
8
electron microscopy
8
microscopy microcinematography
8
l5222 cells
8
bnml cells
8
modes mesenteric
4
infiltration
4
mesenteric infiltration
4

Similar Publications

Introduction: Around 85% of non-small cell lung cancers (NSCLCs) are diagnosed at an advanced stage (IIIB to IV), where therapeutic options depend on molecular analysis. However, diagnostic material for molecular testing is often represented by cytological samples which are generally scarce and span a wide range of preparation types. Thus, the primary objective is to efficiently manage materials for molecular profiling.

View Article and Find Full Text PDF

Rat Sarcoma Virus Family Genes in Acute Myeloid Leukemia: Pathogenetic and Clinical Implications.

Biomedicines

January 2025

Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy.

Acute myeloid leukemias (AMLs) comprise a group of genetically heterogeneous hematological malignancies that result in the abnormal growth of leukemic cells and halt the maturation process of normal hematopoietic stem cells. Despite using molecular and cytogenetic risk classification to guide treatment decisions, most AML patients survive for less than five years. A deeper comprehension of the disease's biology and the use of new, targeted therapy approaches could potentially increase cure rates.

View Article and Find Full Text PDF

Background: Reduced cardiac autophagy, inflammation, and apoptosis contribute to cardiovascular complications caused by metabolic syndrome (MetS). It is documented that the nuclear receptor 4A2 (NR4A2) could modulate autophagy and apoptosis in cardiac complications. The aim of this investigation was to assess the therapeutic potential of luteolin, with documented beneficial properties, against MetS-associated cardiac injury.

View Article and Find Full Text PDF

Background: Givinostat, a potent histone deacetylase (HDAC) inhibitor, is promising for the treatment of relapsed leukemia and myeloma.

Purpose: This study aimed to develop and verify a quick assay for the measurement of givinostat concentration using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) with eliglustat as the internal standard (IS), establishing a basic pharmacokinetic profile for its pre-clinical application and metabolic stability in vitro.

Methods: Sample preparation was performed via protein precipitation using acetonitrile.

View Article and Find Full Text PDF

Diabetic retinopathy is a major ocular complication associated with diabetes mellitus. Pericyte loss is a hallmark of diabetic retinopathy. The platelet-derived growth factor (PDGF)-B-PDGF receptor-β (PDGFRβ) signaling pathway plays an important role in the proliferation and migration of pericytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!