Download full-text PDF

Source
http://dx.doi.org/10.1016/s0140-6736(80)90210-xDOI Listing

Publication Analysis

Top Keywords

transferrin receptors
4
receptors leukaemic
4
leukaemic cells
4
transferrin
1
leukaemic
1
cells
1

Similar Publications

Multi-pathway oxidative stress amplification via controllably targeted nanomaterials for photoimmunotherapy of tumors.

J Nanobiotechnology

January 2025

Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.

Photoimmunotherapy, which combines phototherapy with immunotherapy, exhibits significantly improved therapeutic effects compared with mono-treatment regimens. However, its use is associated with drawbacks, such as insufficient reactive oxygen species (ROS) production and uneven photosensitizer distribution. To address these issues, we developed a controllable, targeted nanosystem that enhances oxidative stress through multiple pathways, achieving synergistic photothermal, photodynamic, and immunotherapy effects for tumor treatment.

View Article and Find Full Text PDF

Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in and mutants, where lysosomes accumulate cholesterol.

View Article and Find Full Text PDF

Hypoxia-tropic delivery of nanozymes targeting transferrin receptor 1 for nasopharyngeal carcinoma radiotherapy sensitization.

Nat Commun

January 2025

CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

Nasopharyngeal carcinoma (NPC), a malignancy highly prevalent in East and Southeast Asia, is primarily treated with radiotherapy (RT). However, hypoxia-induced radioresistance presents a significant challenge. Nanozymes, nanomaterials with catalase-like activity, have emerged as a promising strategy for radiosensitization by converting elevated hydrogen peroxide in the tumor microenvironment into oxygen.

View Article and Find Full Text PDF

A carrier-free ultrasound-responsive polyphenol nanonetworks with enhanced sonodynamic-immunotherapy for synergistic therapy of breast cancer.

Biomaterials

January 2025

Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, PR China.

Sonodynamic therapy (SDT) is an efficient non-invasive strategy for treating breast cancer. However, the therapeutic efficacy of SDT is greatly limited by various defense mechanisms in the tumor microenvironment, particularly the overexpression of B-cell lymphoma-2 (Bcl-2). In this study, based on drug self-delivery systems, a carrier-free ultrasound-responsive polyphenol nanonetwork (GTC) was developed to enhance SDT by inhibiting Bcl-2.

View Article and Find Full Text PDF

Iron metabolism in a mouse model of hepatocellular carcinoma.

Sci Rep

January 2025

Institute of Comparative Molecular Endocrinology, Ulm University, 89081, Ulm, Germany.

Hepatocellular carcinoma (HCC) remains the most prevalent type of primary liver cancer worldwide. p53 is one of the most frequently mutated tumor-suppressor genes in HCC and its deficiency in hepatocytes triggers tumor formation in mice. To investigate iron metabolism during liver carcinogenesis, we employed a model of chronic carbon tetrachloride injections in liver-specific p53-deficient mice to induce liver fibrosis, cirrhosis and subsequent carcinogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!