cDNA cloning and nucleotide sequence analysis have allowed detailed structural studies on RNA segment 10 of the U.K. bovine rotavirus to be undertaken. The complete sequence of 751 nucleotides was determined and found to contain only a single long open reading frame capable of coding for a protein of 175 amino acids. The gene has an unusually long 3' untranslated region of 184 nucleotides or some 24.5% of the total sequence, whose start was confirmed by analysing the carboxyterminal amino acid of the gene 10 product, the glycoprotein VP10c. Analysis of purified virions radio-labelled with [3H]glucosamine and [3H]mannose showed that VP10c is not a detectable component of the virus particle. The two potential glycosylation sites were found to be very close to the amino terminus of the putative translation product, strongly suggesting that the glycoprotein VP10c does not contain a cleavable signal sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0168-1702(84)90011-xDOI Listing

Publication Analysis

Top Keywords

detailed structural
8
bovine rotavirus
8
glycoprotein vp10c
8
molecular biology
4
biology rotaviruses
4
rotaviruses vii
4
vii detailed
4
structural analysis
4
analysis gene
4
gene bovine
4

Similar Publications

Observation of Robust Compressed CuO Octahedra and Exotic Spin Structure in CaCuFeO.

J Am Chem Soc

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

CuO octahedra usually show elongated distortion, leading to active orbitals and planar exchange interactions, while compressed CuO octahedra with active orbitals and unidirectional exchange interactions are exceptionally rare. Here, we design and synthesize a new frustrated antiferromagnet CaCuFeO through a high-pressure and high-temperature approach, in which robust compressed CuO octahedra are realized, separating the FeO sheets that comprise zigzag spin ladders. Magnetic susceptibility and specific heat measurements exhibit a long-range antiferromagnetic order below the Néel temperature of 165 K, which is further confirmed by neutron diffraction.

View Article and Find Full Text PDF

Diverse autoinhibitory mechanisms of FIIND-containing proteins: Insight into regulation of NLRP1 and CARD8 inflammasome.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.

View Article and Find Full Text PDF

Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are membrane-bound structures produced and released into the extracellular space by all types of cells. Due to their characteristics, EVs play crucial roles in cellular communication and signaling, holding an immense potential as biomarkers and molecular transporters. Various methods have been developed to label and characterize EVs, however, visualizing EVs remains a process that requires highly specialized and expensive equipment, which is not always available in all the laboratories.

View Article and Find Full Text PDF

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!