The effects of intramuscular treatment for 3 and 5 consecutive days with thallium sulphate (2.5, 5 and 10 mg/Kg) on GABA content, glutamate - decarboxylase (GAD) and GABA-transaminase (GABA-T) activity in different areas of the rat brain were studied. Thallium at the dose levels used did not produce significant changes in GABA content, GAD and GABA-T activity in the brain hemispheres, brainstem, hypothalamus, diencephalon and caudate nucleus.

Download full-text PDF

Source

Publication Analysis

Top Keywords

areas rat
8
rat brain
8
gaba content
8
gaba-t activity
8
lack effects
4
effects thallium
4
thallium gabaergic
4
gabaergic mechanisms
4
mechanisms discrete
4
discrete areas
4

Similar Publications

Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure.

View Article and Find Full Text PDF

Stem cells prevent long-term deterioration of renal function after renal artery revascularization in a renovascular hypertension model in rats.

Sci Rep

January 2025

Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.

Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.

View Article and Find Full Text PDF

Enhanced Nasal-to-Brain Drug Delivery by Multivalent Bioadhesive Nanoparticle Clusters for Cerebral Ischemic Reperfusion Injury Protection.

Acta Biomater

January 2025

School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China. Electronic address:

Following cerebral ischemia, reperfusion injury can worsen ischemia-induced functional, metabolic disturbances, and pathological damage upon blood flow restoration, potentially leading to irreversible harm. Yet, there's a dearth of advanced, localized drug delivery systems ensuring active pharmaceutical ingredient (API) efficacy in cerebral protection during ischemia-reperfusion. This study introduces a multivalent bioadhesive nanoparticle-cluster, merging bioadhesive nanoparticles (BNPs) with dendritic polyamidoamine (PAMAM), enhancing nose-to-brain delivery and brain protection efficacy against cerebral ischemia-reperfusion injuries (CIRI).

View Article and Find Full Text PDF

Neuro-reproductive toxicity and carcinogenicity of 1-bromopropane - studies for evidence-based preventive medicine (EBPM).

J Occup Health

January 2025

Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.

Bromopropane was introduced commercially as an alternative to ozone-depleting and global warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties.

View Article and Find Full Text PDF

Dendritic alterations precede age-related dysphagia and nucleus ambiguus motor neuron death.

J Physiol

January 2025

Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.

Motor neurons (MNs) within the nucleus ambiguus innervate the skeletal muscles of the larynx, pharynx and oesophagus, which are essential for swallow. Disordered swallow (dysphagia) is a serious problem in elderly humans, increasing the risk of aspiration, a key contributor to mortality. Despite this importance, very little is known about the pathophysiology of ageing dysphagia and the relative importance of frank muscle weakness compared to timing/activation abnormalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!