Download full-text PDF

Source

Publication Analysis

Top Keywords

16-substituted steroids
4
steroids fetus
4
fetus newborn
4
newborn infant
4
infant pregnancies
4
pregnancies complicated
4
complicated eph-gestosis
4
16-substituted
1
fetus
1
newborn
1

Similar Publications

A series of D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one attached to an electron-releasing (ER) or electron-withdrawing (EW) groups via steroidal oxoacetate intermediate were synthesized to investigate their protein aggregation inhibition potential using human lysozyme (HLZ). The influence of the type of substituent at the C-6 positions of the quinoxalin-2(1H)-one ring on the protein aggregation inhibition potential was observed, showing that the EW moiety improved the protein aggregation inhibition potency. Of all the evaluated compounds, NO-substituted quinoxalin-2(1H)-one derivative 13 was the most active compound and had a maximum protein aggregation inhibition effect.

View Article and Find Full Text PDF

16-Substituted steroids alleviate LPS-induced neurodegenerative disorders in rats.

Eur J Pharmacol

March 2021

University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India. Electronic address:

The neuroprotective effects of some 16-substituted steroidal derivatives against the locomotive impairment and cognitive deficits in the lipopolysaccharide (LPS)-induced neuroinflammation model of rats have been investigated. The in vivo and in vitro evaluations include behavioural tests (actophotometer, block tests, Morris water maize and elevated plus maize), estimation of the biochemical parameters such as acetylcholinesterase, lipid peroxide, reactive oxygen, and nitric oxide species and molecular assays for the key proinflammatory mediators like Tumour Necrosis Factor alpha (TNF-α) and Interleukin 1 beta (IL- 1β) after 21 days of the treatment with the steroids. Behavioural and biochemical studies indicated impairment in the locomotor activity and cognitive dysfunction in rats after LPS treatment.

View Article and Find Full Text PDF

Background And The Purpose Of The Study: Modified androsterone derivatives are class of steroidal compounds with potential anticancer properties. Various steroidal derivatives containing substitution at position 16 have shown diversified pharmacological activities. In the present study, a new series of cytotoxic 16-(substituted benzylidene) derivatives of dehydroepiandrosterone (DHEA) were synthesized and evaluated against three different cancer cell lines.

View Article and Find Full Text PDF

As a part of our investigations into the structural-activity relationship studies of a novel class of medicinally active 16-substituted steroids, several new 16-imidazolyl substituted steroidal derivatives have been synthesized and pharmacologically evaluated in the current study. The new steroidal analogues 5, 6, 8, 9, 11 and 12 exhibited moderate cytotoxic effects in sixty cancer cell lines derived from nine cancers types. The imidazolyl substituted steroidal derivatives 6 (DPJ-RG-1241) and 7 (RB-401) were obtained as the powerful inhibitors of aromatase with IC50=0.

View Article and Find Full Text PDF

Design, synthesis, and biological evaluation of 16-substituted 4-azasteroids as tissue-selective androgen receptor modulators (SARMs).

J Med Chem

August 2009

Department of Medicinal Chemistry, Merck Research Laboratories, P.O. Box 4, 770 Sumneytown Pike, West Point, Pennsylvania 19486, USA.

A novel series of 16-substituted-4-azasteroids has been identified as potential tissue-selective androgen receptor modulators. These ligands display potent hAR binding and agonist activity, low virilizing potential, and good pharmacokinetic profiles in dogs. On the basis of its in vitro profile, 21 was evaluated in the OVX and ORX rat models and exhibited an osteoanabolic, tissue-selective profile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!