It has been proposed elsewhere [Meeker, R.B. & Harden, T. K. (1982) Mol. Pharmacol. 22, 310-319] that muscarinic cholinergic receptor-mediated attenuation of cAMP accumulation occurs through activation of phosphodiesterase in 1321N1 human astrocytoma cells. Pertussis toxin, which ADP-ribosylates the guanine nucleotide regulatory protein involved in receptor-mediated inhibition of adenylate cyclase (Ni), has been utilized to further differentiate between the mechanism of cholinergic regulation of cAMP metabolism in 1321N1 cells and the mechanism involving inhibition of adenylate cyclase in other tissues. Muscarinic receptor-mediated regulation of cAMP accumulation in NG108-15 neuroblastoma-glioma cells occurs through inhibition of adenylate cyclase. Pretreatment of these cells with pertussis toxin completely blocked the capacity of carbachol to attenuate cAMP accumulation. In contrast, concentrations of pertussis toxin two to three orders of magnitude higher than those effective in NG108-15 cells had no effect on muscarinic receptor-mediated attentuation of cAMP accumulation in 1321N1 cells. In addition, no effect of pertussis toxin was observed either on the control rate or the carbachol-stimulated rate of cAMP degradation measured directly in intact 1321N1 cells. A 41,000 Mr protein previously proposed to be the alpha subunit of Ni was labeled during incubation of a plasma membrane fraction from 1321N1 cells with [32P]NAD and pertussis toxin. Pertussis toxin is apparently active in 1321N1 cells, since this protein substrate was not labeled in plasma membrane preparations from cells previously incubated with toxin. Functional activity of Ni was demonstrated by the observation that guanosine 5'-[gamma-thio]triphosphate- and GTP-mediated inhibition of forskolin-stimulated adenylate cyclase activity occurred in cell-free preparations from 1321N1 cells. The inhibitory activity of these guanine nucleotides was lost in membrane preparations from pertussis toxin-treated cells. The data suggest that adenylate cyclase is not involved in cholinergic action in 1321N1 cells and, furthermore, Ni is not involved in muscarinic receptor-mediated activation of phosphodiesterase in these cells. Thus, pertussis toxin can be used to differentiate between two mechanisms of cholinergic regulation of cAMP metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC391774PMC
http://dx.doi.org/10.1073/pnas.81.18.5680DOI Listing

Publication Analysis

Top Keywords

pertussis toxin
32
1321n1 cells
28
adenylate cyclase
20
camp accumulation
16
cells
14
cells pertussis
12
inhibition adenylate
12
regulation camp
12
muscarinic receptor-mediated
12
pertussis
9

Similar Publications

Kappa opioid receptors (KOR) expressed by peripheral pain-sensing neurons (nociceptors) are a promising target for development of effective and safer analgesics for inflammatory pain that are devoid of central nervous system adverse effects. Here we sought to delineate the signaling pathways that underlie peripheral KOR-mediated antinociception in adult male and female Sprague-Dawley rats. In an inflammatory model of pain, local intraplantar (i.

View Article and Find Full Text PDF

Abscisic Acid, Microtubules and Phospholipase D-Solving a Cellular Bermuda Triangle.

Int J Mol Sci

December 2024

Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.

Rice plants are important food crops that are sensitive to cold stress. Microtubules (MTs) are highly associated with plant response to cold stress. The exogenous application of abscisic acid (ABA) can transiently induce the cold stability of microtubules.

View Article and Find Full Text PDF

Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.

View Article and Find Full Text PDF

Neuro-immunobiology and treatment assessment in a mouse model of anti-NMDAR encephalitis.

Brain

December 2024

Neuroimmunology Program, Fundació Clínic per la Recerca Biomèdica - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona 08036, Spain.

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a disorder mediated by autoantibodies against the GluN1 subunit of NMDAR. It occurs with severe neuropsychiatric symptoms that often improve with immunotherapy. Clinical studies and animal models based on patients' antibody transfer or NMDAR immunization suggest that the autoantibodies play a major pathogenic role.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the safety and immunogenicity of a TdaP vaccine for pregnant women living with HIV, aiming to protect infants from severe pertussis disease.
  • Conducted in Uganda, the trial randomly assigned 181 women (HIV-positive and HIV-negative) to receive either the TdaP or Td vaccine, evaluating immune responses in infants post-delivery.
  • Findings will provide valuable insights into the vaccine's effectiveness and safety for this specific population, contributing to better health outcomes for mothers and their babies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!