The amount of skin calcium-binding protein, evaluated using a sensitive radioimmunoassay and indirect immunofluorescence, was decreased in vitamin-D deficient rats and increased after one week vitamin D3 or 1 alpha-hydroxyvitamin D3 treatment. In vitamin D replete and in vitamin D-deficient animals, skin calcium-binding protein was not sensitive to changes in dietary and/or serum calcium concentrations. These results indicate that this protein is different from other calcium-binding proteins such as parvalbumin and calmodulin which are not vitamin D-dependent, and also different from intestinal calcium-binding protein which, in D replete animals, is sensitive to changes in dietary and serum calcium concentrations. Skin calcium-binding protein may, therefore, represent a new class of vitamin D-dependent protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(84)90403-0DOI Listing

Publication Analysis

Top Keywords

calcium-binding protein
20
skin calcium-binding
16
sensitive changes
8
changes dietary
8
serum calcium
8
calcium concentrations
8
vitamin d-dependent
8
protein
7
vitamin
7
calcium-binding
5

Similar Publications

Background: Hypertension is a risk factor for cognitive impairment and dementia. Anti-hypertensives (AHT) are commonly used in old age, but their association with cognition and brain pathology is not well understood.

Method: To investigate the relation of AHT with change in cognitive function and postmortem brain pathology, we evaluated 4,207 older persons without known dementia at enrollment and a subset of 1880 participants who died and came to autopsy.

View Article and Find Full Text PDF

Fetuin-B (FETUB) is a glycoprotein mainly synthesized and secreted by the liver. It is involved in many physiological and pathological processes including glucose metabolism, inflammatory response, nonalcoholic fatty liver disease, myocardial infarction, tumor and so on. In recent years, FETUB has also been confirmed to play roles in the female reproductive system.

View Article and Find Full Text PDF

Hippocampal dendritic spines store-operated calcium entry and endoplasmic reticulum content is dynamic microtubule dependent.

Sci Rep

January 2025

Laboratory of Biomedical Imaging and Data Analysis, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.

One of the mechanisms of calcium signalling in neurons is store-operated calcium entry (SOCE), which is activated when the calcium concentration in the smooth endoplasmic reticulum (ER) decreases and its protein-calcium sensor STIM (stromal interacting molecule) relocate to the endoplasmic reticulum and plasma membrane junctions, forms clusters and induces calcium entry. In electrically non-excitable cells, STIM1 is coupled with the positive end of a tubulin microtubule through interaction with EB1 (end-binding) protein, which controls its oligomerization, SOCE and participates in ER movement. STIM2 homologue, which is specific for mature hippocampal dendritic spines, is known to interact with EB3 protein, however, not much is known about the role of this interaction in STIM2 clustering or ER trafficking in neurons.

View Article and Find Full Text PDF

S100P is a ferroptosis suppressor to facilitate hepatocellular carcinoma development by rewiring lipid metabolism.

Nat Commun

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.

Ferroptosis is a newly identified programmed cell death induced by iron-driven lipid peroxidation and implicated as a potential approach for tumor treatment. However, emerging evidence indicates that hepatocellular carcinoma (HCC) cells are generally resistant to ferroptosis and the underlying molecular mechanism is poorly understood. Here, our study confirms that S100 calcium binding protein P (S100P), which is significantly up-regulated in ferroptosis-resistant HCC cells, efficiently inhibits ferroptosis.

View Article and Find Full Text PDF

SLC10A7 regulates O-GalNAc glycosylation and Ca homeostasis in the secretory pathway: insights into SLC10A7-CDG.

Cell Mol Life Sci

January 2025

Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France.

Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!