Fifty-four patients with a cardiomyopathy were studied by RNCA and Fourier amplitude and phase image analysis. The study group included patients with ischemic cardiomyopathy (27) and an equal number of patients with a primary cardiomyopathy: drug-induced (22), idiopathic (three), radiation-induced (one), and amyloidosis (one). Twenty-eight patients had rest studies alone and 26 had both rest and stress studies (80 total). The mean rest LVEF in the ischemic group was 27.9%, in the drug-induced group 36.5%, and in the idiopathic group 30%. The stress LVEF decreased in 92% of patients with ischemic cardiomyopathy and 45% of patients with primary (drug-induced) cardiomyopathy. Fourier amplitude and phase images were generated for each study. Amplitude and phase images were abnormal in all patients with an ischemic cardiomyopathy. LV amplitude abnormalities were regional and phase was directional. A zone of dysynergy on phase analysis was present in 44% of patients with ischemic cardiomyopathy. In the drug-induced primary cardiomyopathy group, all patients had abnormal amplitude and 86% had abnormal phase. Amplitude abnormalities were global rather than regional and phase patterns were nondirectional. Only one patient had a zone of dysynergy on the phase image. We conclude that the stress LVEF alone cannot consistently differentiate between ischemic and primary cardiomyopathies and that Fourier amplitude and phase analysis may be useful in determining the etiology of a cardiomyopathy (ischemic vs primary).

Download full-text PDF

Source
http://dx.doi.org/10.1097/00003072-198406000-00003DOI Listing

Publication Analysis

Top Keywords

amplitude phase
20
fourier amplitude
16
patients ischemic
16
ischemic cardiomyopathy
16
phase analysis
12
phase
10
patients
10
cardiomyopathy
10
patients cardiomyopathy
8
phase image
8

Similar Publications

To demonstrate the utility of somatosensory evoked potentials (SEPs) following median nerve stimulation for chronological assessment of sensory function in patients with subacute stroke during rehabilitation. Retrospective study. Forty-seven patients with hemiparesis due to stroke during the subacute phase.

View Article and Find Full Text PDF

Transmission electron microscopy, especially at cryogenic temperature, is largely used for studying biological macromolecular complexes. A main difficulty of TEM imaging of biological samples is the weak amplitude contrasts due to electron diffusion on light elements that compose biological organisms. Achieving high-resolution reconstructions implies therefore the acquisition of a huge number of TEM micrographs followed by a time-consuming image analysis.

View Article and Find Full Text PDF

In this Letter, we propose and experimentally validate a high-fidelity and adaptive forward-phase-based vibration sensing using a Wiener filter (WF). In commercial coherent digital subcarrier multiplexing (DSCM) systems under external cavity lasers (ECLs), frequency-domain pilot tones (FPTs) in subcarrier intervals are employed for dynamic frequency offset estimation (FOE), carrier phase estimation (CPE), and polarization demultiplexing. The phase estimated by the CPE module is processed with the WF to achieve high-fidelity extraction of the vibration-induced phase.

View Article and Find Full Text PDF

Fourier ptychographic microscopy (FPM) can provide high-throughput imaging by computationally combining low-resolution images at different spatial frequencies within the Fourier domain. The core algorithm for FPM reconstruction draws upon phase retrieval techniques, including methods such as the ptychographic iterative engine (PIE), regularized PIE (rPIE), and embedded pupil function FPM (EPRY-FPM). The calibration of the physical setup plays a crucial role in the quality of the reconstructed high space-bandwidth product (SPB) image.

View Article and Find Full Text PDF

We present a non-interferometric technique for quantitative phase imaging (QPI) that is cost-effective, easily integrated into standard microscopes, and capable of wide-field imaging with noncoherent light. Our method measures the phase gradient through optical differentiation using spatially variable amplitude filters, accommodating a range of transmission functions, including commercially available variable neutral-density filters. This flexibility is made possible by a general relationship we derive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!