Download full-text PDF

Source
http://dx.doi.org/10.1016/0022-2836(67)90055-1DOI Listing

Publication Analysis

Top Keywords

double-helical rna
8
molecular crystal
4
crystal structures
4
structures double-helical
4
rna x-ray
4
x-ray diffraction
4
diffraction study
4
study fragmented
4
fragmented yeast
4
yeast rna
4

Similar Publications

Noncanonical base pairs play an important role in enabling the structural and functional complexity of RNA. Molecular recognition of such motifs is challenging because of their diversity, significant deviation from the Watson-Crick structures, and dynamic behavior, resulting in alternative conformations of similar stability. Triplex-forming peptide nucleic acids (PNAs) have emerged as excellent ligands for the recognition of Watson-Crick base-paired double helical RNA.

View Article and Find Full Text PDF

Comparative analysis of predicted DNA secondary structures infers complex human centromere topology.

Am J Hum Genet

December 2024

Laboratory of Genome Evolution, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy. Electronic address:

Article Synopsis
  • - The text discusses how secondary structures, which are unique arrangements of nucleic acids caused by internal interactions, can occur in both RNA and single-stranded DNA, impacting key processes like DNA replication and transcription, thus affecting genome stability.
  • - The study focuses on the comparison of secondary structures in linear single-stranded DNA from different specialized human loci, such as centromeres and coding regions, revealing that centromeres have the highest complexity and instability in their secondary structures.
  • - Findings indicate that the intricate self-hybridizing properties of centromeric repeats may lead to chromosome missegregation when chromatin is disrupted, highlighting the functional importance of these structures in various DNA processes like transcription and recombination.
View Article and Find Full Text PDF

The genetic information that dictates the structure and function of all life forms is encoded in the DNA. In 1953, Watson and Crick first presented the double helical structure of a DNA molecule. Their findings unearthed the desire to elucidate the exact composition and sequence of DNA molecules.

View Article and Find Full Text PDF

DNA/RNA heteroduplex technology with cationic oligopeptide reduces class-related adverse effects of nucleic acid drugs.

Mol Ther Nucleic Acids

September 2024

Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.

Antisense oligonucleotides (ASOs) are a therapeutic modality for incurable diseases. However, systemic injection of gapmer-type ASOs causes class-related toxicities, including prolongation of activated partial thromboplastin time (aPTT) and thrombocytopenia. We previously reported that cholesterol-conjugated DNA/RNA heteroduplex oligonucleotides (Chol-HDOs) exhibit significantly enhanced gene-silencing effects compared to ASOs, even in the central nervous system, by crossing the blood-brain barrier.

View Article and Find Full Text PDF

The first line of defense against invading pathogens usually relies on innate immune systems. In this context, the recognition of exogenous RNA structures is primordial to fight, notably, against RNA viruses. One of the most efficient immune response pathways is based on the sensing of RNA double helical motifs by the oligoadenylate synthase (OAS) proteins, which in turn triggers the activity of RNase L and, thus, cleaves cellular and viral RNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!